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Abstract. This is a report on joint work with Lashi Bandara and
Michael Munn. We discuss some smoothing results for metric measure
spaces. Mainly, we present regularity results for a flow of metric-measure
spaces due to Gigli-Mantegazza in the context of geometric singularities
modeled using rough metrics.

1. Motivation

A fundamental question in the crossroad of metric geometry and geomet-
ric analysis is whether a metric and measure space can be smoothed out
i.e. given a metric and measure space (X, d,m), can one find a sequence of
Riemannian (or Finslerian) manifolds (Mn, gn) such that the corresponding
metric and measure spaces converge to (X, d,m) in the measured Gromov
Hausdorff distance?

There are two general ways to approach this problem. One is the di-
rect method namely, what metric geometric conditions can one impose on
X which guarantee the smoothability of X. As an example of the direct
method, in [KL], Kittabeppu and myself showed if R1 6= ∅ in a compact
RCD space X, then X is 1−dimensional hence, a Ricci limit space (once
proven to be 1D, being a Ricci limit space follows from the work of Cheeger
and Colding).

The second method to approach the smoothability question is to use flow
methods. In this method one needs to consider a flow with good homogeniz-
ing and smoothing properties and the hope is to be able to flow the metric
and measure space X in a continuous way into a Riemannian manifold.

As an example, when X is a compact Alexandrov surface (proven by
Alexandrov himself and also recently a proof given by Richard [RT] using
Ricci flow techniques). Also when X is a compact 3−dimensional poly-
hedron, Lebedeva-Matveev-Petrunin-Chevchishin [LMPS] showed that X is
smoothable using Ricci flow.

The following are some weak formulations of Ricci flow or flows similar
to the Ricci flow which can be applied to metric and measure spaces.
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• McCann and Topping outlined a notion of weak Ricci flow heuristi-
cally via contraction properties of the heat flow.
• Gigli and Mantegazza introduced a flow using the heat flow in the

Wassestein space of the probability measures. The GM flow is, in a
sense, a linearization of the Ricci flow for metric-measure spaces. GM
flow is easier to use for smoothing purposes. Examples of smoothing
via GM flow: Erbar-Juillet showed smoothing for Heisenberg group
and nonsmoothing for some open Euclidean cones.
• Other weak formulations of (super) Ricci flow for metric spaces are

given by Sturm (using dynamical optimal transport) and Haslhofer-
Naber (using stochastic methods).

2. Smoothing properties of Gigli-Mantegazza flow

Let M be a smooth compact manifold, and g a smooth metric. Let
ρ

g
t :M×M→ R be the heat kernel of the Laplacian ∆g. Fix t > 0, x ∈M

and v ∈ TxM. Let ϕt,x,v be a solution to the continuity equation

(CE)

− divg(ρg
t (x, y)∇ϕt,x,v)(y) = (dxρ

g
t (x, y))(v)ˆ

M
ϕt,x,v(y) dµg(y) = 0.

Then, the Gigli-Mantegazza flow gt is a metric evolving in time by:

(GM)
gt(u, v)(x) =

ˆ
M

g(∇ϕt,x,u(y),∇ϕt,x,v(y)) ρ
g
t (x, y) dµg(y)

= 〈ρg
t (x, · )∇ϕt,x,u,∇ϕt,x,v〉L2(M,g).

The GM flow is tangent to the Ricci flow in the following way. Let γ :
[0, 1]→M be a g-geodesic. Then,

∂tgt(γ̇(s), γ̇(s))| t=0 = −2Ricg(γ̇(s), γ̇(s)),

That is, the metrics t 7→ gt is tangential to the Ricci flow almost-everywhere
along g-geodesics. Main redeeming feature: this can be defined rather easily
as a flow of distance metrics dt for metric spaces (X ,d, µ) that satisfy the
Riemannian Curvature Dimension (RCD) condition.

2.1. Wasserstein space and synthetic Ricci curvature. Let (X , d, µ)
be a compact measure metric geodesic space. Denote set of probability
measures by P(X ). For ν, σ ∈P(X ), a transport plan between ν and σ is
measure π on X × X such that

π(A×X ) = ν(A) and π(X ×B) = σ(B).

Define:

W2(ν, σ)2 = inf

{ˆ
X×X

d(x, y)2 dπ : π transport map from ν to σ

}
,



GEOMETRIC SINGULARITIES UNDER THE GIGLI-MANTEGAZZA FLOW 3

which is the Wasserstein metric. The space (P(X ),W2) is the Wasserstein
space and it is a geodesic space. Let ν ∈ P(X ) as before. The relative
entropy of ν with respect to µ is then given by

Entµ(ν) =

{´
X ρ log ρ dµ, ν � µ, dν = ρ dµ,

+∞, otherwise.

Suppose that ν0, ν1 ∈P(X ) and let νt be the geodesic between ν0 and ν1.
Now, suppose that there exists κ ∈ R such that

Entµ(νt) ≤ (1− t) Entµ(ν0) + tEntµ(ν1)− κ

2
(1− t)tW 2

2 (ν0, ν1).

Then, we say that (X ,d, µ) has Ricci curvature bounded below by κ, or is
said to be CD(κ,∞).

For a Lipschitz function ξ ∈ Lip(X ,d), recall the pointwise Lipschitz
constant :

Lip ξ(x) = lim sup
y→x

|ξ(x)− ξ(y)|
d(x, y)

,

for non-isolated points x ∈ X . For f ∈ L2(X , µ), if fn → f with fn ∈
Lip(X ,d), define the Cheeger energy :

Ch(f) = inf
Lip(X ,d)3fn→f

lim
n→∞

1

2

ˆ
X
|Lip fn|2 dµ.

If no such such sequence exists, Ch(f) = +∞. The first-order Sobolev space
is defined as:

W1,2(X ) =
{
f ∈ L2(X , µ) : Ch(f) <∞

}
.

It is a Banach space with respect to the norm

‖f‖2W1,2 = ‖f‖22 + 2Ch(f).

If this norm polarises, i.e., (W1,2(X ), ‖· ‖W1,2) is a Hilbert space, then we
say that (X ,d, µ) is infinitesimally Hilbertian. The space (X , d, µ) is RCD
if it is CD(κ,∞) and it is infinitesimally Hilbertian. This is equivalent to
the Laplacian associated to the energy Ch being linear.

For an RCD space (X ,d, µ), the heat kernel ρt exists and it is Lips-
chitz. There is an induced heat action on (P(X ),W2), which is a map Ht :
P(spt µ) → P(spt µ) such that for all ν, σ ∈ P(X ) with spt ν, spt σ ⊂
spt µ,

W2(Ht(ν),Ht(σ)) ≤ e−κt W2(ν, σ).

For (X , d, µ) = (M,dg, µg/µg(M)), if s 7→ γs is an absolutely continuous
curve, then

Ht(δγs) = ρ
g
t (γs, · ) dµg.



4 SAJJAD LAKZIAN

2.2. The GM flow for RCD spaces. Define: d̃t(x, y) = W2(Ht(δx),Ht(δy)).

The spaces (X , d̃t) are pseudo-metric spaces for each t > 0. Noting that

s→ γs is d-Lipschitz implies that it is also d̃t Lipschitz, define

dt(x, y) = inf
γ d−Lipschitz

ˆ
|γ̇s|d̃t

ds,

where

|γ̇s|d̃t
= lim

h→0

d̃t(γs+h, γs)

h
.

The family of spaces (X , dt) are metric spaces for all t > 0, limt→0 dt = d.

Theorem 2.1 (Gigli-Mantegazza, [GM]). When (X , d, µ) = (M,dg, µg/µg(M)),
we have that dt = dgt.

Theorem 2.2 (Theorem 1.1, [BLM]). LetM be a smooth, compact manifold
with rough metric g that induces a distance metric dg. Moreover, suppose
there exists K ∈ R and N > 0 such that (M,dg, µg) ∈ RCD(K,N). If

S 6=M is a closed set and g ∈ Ck(M\ S), there exists a family of metrics
gt ∈ Ck−1,1 on M \ S evolving according to (GM) on M \ S. For two
points x, y ∈ M that are gt-admissible, the distance dt(x, y) given by the
RCD(K,N) Gigli-Mantegazza flow is induced by gt.

Note: x, y ∈ M \ S are gt-admissible if for any abs. cts. γ : I → M
connecting these points, there is another abs. cts. γ′ : I → M with dt-
length less than γ and for which γ′(s) ∈ M \ S. Let g ∈ Γ(T (2,0)M) be
symmetric, with measurable coefficients. Suppose for each x ∈ M, there
exists some chart (ψ,U) containing x and a constant C ≥ 1 (dependent on
U), such that, for y-a.e. in U ,

C−1|u|ψ∗δ(y) ≤ |u|g(y) ≤ C|u|ψ∗δ(y),

where u ∈ TyM, |u|2g(y) = g(u, u) and ψ∗δ is the pullback of the Euclidean

metric inside ψ(U) ⊂ Rn. Then, g is called a rough metric.

• By the usual expression dµg =
√

det gij dL inside local comparable
charts, obtain a Borel measure µg, finite on compact sets.
• A priori, there may not be an induced length structure.

• The Lp spaces exist, and differentiation on functions ∇ = d is
densely-defined and closable.
• Sobolev space W1,2(M) = D(∇) and the Laplacian is a self-adjoint

operator ∆g = −div∇, where div = ∇∗.
• Two rough metrics g and g̃ are C-close for some C ≥ 1 if

C−1|u|g̃(y) ≤ |u|g(y) ≤ C|u|g̃(y),

for y-a.e. in M.
• In this situation, ∆g = −θ−1 divg̃ θB∇, where

g(u, v) = g̃(Bu, v) and θ =
√

det B.
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Main fact: for M compact, for every rough metric g, there exists a smooth
metric g̃ that is C-close to g. We have that ϕt,x,v ∈W1,2(M) solves:

− divg(ρg
t (x, y)∇ϕt,x,v)(y) = (dxρ

g
t (x, y))(v)ˆ

M
ϕt,x,v(y) dµg(y) = 0.

if and only if

− divg̃(B(y)θ(y)ρg
t (x, y)∇ϕt,x,v)(y) = θ(y)(dxρ

g
t (x, y))(v)ˆ

M
ϕt,x,v(y) dµg(y) = 0.

So, it suffices to study divergence form operators with L∞ coefficients for
smooth metrics g̃. Fix M smooth compact manifold and g̃ a smooth Rie-
mannian metric. Let A ∈ Γ(L∞(T (1,1)M)) real-symmetric and elliptic:

(i) there exist κ > 0 such that for x a.e. g̃x(A(x)u, u) ≥ κ|u|2x
(ii) there exists a Λ <∞ such that esssupx∈M |A(x)| < Λ.

• Associated energy: JA[u, v] = 〈A∇u,∇v〉 for D(JA) = W1,2(M).
• Ellipticity gives: κ‖∇u‖2 ≤ JA[u, u] ≤ Λ‖∇u‖2.
• Lax-Milgram theorem yields LA = −divA∇ with domain

D(LA) =
{
u ∈W1,2(M) : v 7→ JA[u, v]continuous

}
as a non-negative self-adjoint operator. Moreover, D(

√
LA) = W1,2(M).

• L2(M) = N (LA)⊕⊥ R(LA),
• N (LA) = N (∇) and crucially,

R(LA) = R :=

{
u ∈ L2(M) :

ˆ
u = 0

}
,

• The operator LRA = LA with D(LRA ) = D(LA) ∩ R is an unbounded
operator LRA : R → R.
• σ(LA) = {0 = λ0 < λ1 ≤ λ2 ≤ . . . } , and
• σ(LRA ) = {0 < λ1 ≤ λ2 ≤ . . . } .

Proposition 2.3. Let f ∈ L2(M) with
´
f dµg̃ = 0. Then, there exists a

unique u ∈ W1,2(M) with
´
u dµg̃ = 0 such that LAu = f . Explicitly,

u = (LRA )−1f.

Let g be a rough metric, g(u, v) = g̃(Bu, v), and let (x, y) 7→ ωx(y) ∈
C0,1(M2), ωx > 0. Suppose there exists ∅ 6= N ⊂ M open set on which
x 7→ ωx(· ) ∈ Ck(N ), for k ≥ 1. Let

Dx = −divg ωx∇ = −θ−1 divg̃ Bθωx∇.
The continuity equation is then

(F) Dxϕx = ηx.

Proposition 2.4. Let ηx ∈ L2(M) with
´
ηx dµg = 0. Then there exists a

unique ϕx ∈W1,2(M) with
´
ϕx dµg = 0 solving (F).
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To understand regularity, we need to understand the behaviour of the
operators x 7→ Dx. Two crucial facts:

• D(Dx) = D(∆g) and Dxu = ωx∆gu− g(∇u,∇ωx),
• M 3 x 7→ Dx : (D(∆g), ‖· ‖∆g) → L2(M) is a uniformly bounded

family of operators and ‖u‖Dx ' ‖u‖∆g holds with the implicit con-
stant independent of x ∈M.

Let v ∈ TxM and γ : (−ε, ε) → M such that γ(0) = x and γ̇(0) = v. Let
f : N → V, where V where V is some normed vector space.

• Difference quotient: Qvsf(x) = f(x)−f(γ(s))
s .

• Directional derivative of f (when it exists and it is independent of
the generating curve γ): (dxf(x))(v) = lims→0Q

v
sf(x).

For us, V = L2(M) with the weak topology for the choice f(x) = Dx. More

precisely, if there exists D̃x : D(∆g)→ L2(M) satisfying lims→0〈QvsDxu,w〉 =

〈D̃xu,w〉, for every w ∈W1,2(M), say that Dx has a (weak) derivative at x

and write (dxDx) = D̃x.

Proposition 2.5. Let x 7→ ux : N → D(∆g), v ∈ TxM and suppose that
(dxux)(v) exists weakly. Then (dxDxux)(v) exists weakly if and only if
Dx((dxux)(v)) exists weakly and

(dxDxux)(v) = (dxDx)(v)ux + Dx((dxux)(v)).

Hence,

Theorem 2.6. Suppose that k ≥ 1 and (x, y) 7→ ωx(y) ∈ C0,1(M2) and
x 7→ ωx ∈ Ck(N ). Moreover, suppose that (x, y) 7→ ηx(y) ∈ C0(N ×M)
and x 7→ ηx(y) ∈ Cl(N ) where l ≥ 1. If at x ∈ N , ϕx solves (F) with´
M ϕx dµg =

´
M ηx dµg = 0, the map x 7→ 〈ηx, ϕx〉 ∈ Cmin{k,l}−1,1(N ).
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