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Abstract: In this paper, we give the characterization ofmetricmeasure spaces that satisfy synthetic lower Rie-
mannian Ricci curvature bounds (so called RCD*(K, N) spaces) with non-empty one dimensional regular sets.
In particular, we prove that the class of Ricci limit spaces with Ric ≥ K and Hausdor� dimension N and the
class of RCD*(K, N) spaces coincide for N < 2 (They can be either complete intervals or circles). We will also
prove a Bishop-Gromov type inequality (that is ,roughly speaking, a converse to the Lévy-Gromov’s isoperi-
metric inequality and was previously only known for Ricci limit spaces) which might be also of independent
interest.
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1 Introduction
In the past few decades, understanding Ricci limit spaces has been a central theme in geometric analysis.
Ricci limit spaces are themetric spaces that are obtained as the pointedGromov-Hausdor� limits of sequences
of Riemannian manifolds with uniform lower Ricci curvature bounds. Studying Ricci limit spaces is a key in
understanding themetric andmeasure properties of Riemannianmanifoldwith lower Ricci curvature bound.
A deep theory of these spaces has been developed over the years mostly by the work of Cheeger and Colding
(see [11–14]).

A very interesting and still unanswered question regarding the Ricci limit spaces is whether they can be
characterized solely based on their intrinsic metric (and measure) properties. For a Riemannian manifold
(Mn , g), a lower Ricci curvature bound can be characterized solely in terms of the metric measure properties
of the inducedmetric measure space, (M, dg , dvolg), where dg is the distance induced onMn by the Rieman-
nian metric g. It is by nowwell-known that, RicMn ≥ K is equivalent to metric measure space, (M, dg , dvolg),
satisfying CD(K, n) curvature-dimension conditions in the sense of Lott-Sturm-Villani (see the seminal pa-
pers [30,37, 38]). The class of CD(K, N) spaces is actually much bigger than the class of Ricci limit spaces (of
Riemannian manifolds with dimension at most N and with Ric ≥ K). In fact, there are Finsler manifolds that
satisfy CD(K, N) curvature-dimension conditions (see Ohta [33]) but from the work of Cheeger-Colding, we
know that Finsler manifolds can not arise as Ricci limit spaces.

In order to exclude Finslerian spaces, Ambrosio-Gigli-Savaré [2] have introduced thenotion of dimension-
free Riemannian lower Ricci bound for possibly non-compact metric measure spaces with �nite measures.
Afterwards, Ambrosio-Gigli-Mondino-Rajala extended this notion to the non-compact metric spaces with σ-
�nite measures [3]. The dimensional Riemannian lower Ricci bound for metric measure spaces was later
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considered and investigated in Erbar-Kuwada-Sturm [19] and also independently in Ambrosio-Mondino-
Savaré [1].

Roughly speaking, a CD(K, N) metric measure space, (X, d,m), is said to satisfy the Riemannian
curvature-dimension conditions (for short, wewill call it an RCD(K, N) space) whenever the associated weak
Sobolev space W1,2 is a Hilbert space. When W1,2 is a Hilbert space, the space is said to be in�nitesimally
Hilbertian. In essence, in�nitesimal Hilbertianity means that the heat �ow and the Laplacian on these spaces
(de�ned in [2] ) are Linear. It is readily veri�ed that Ricci limit spaces are in fact in�nitesimally Hilbertian. It
is also a well-known fact that an in�nitesimally Hilbertian Finsler manifold has to be a Riemannianmanifold
which is a result of the Cheeger energy being a quadratic form. It is yet not known whether every RCD(K, N)
space is a Ricci limit space.

Bacher-Sturm [6] introduced reduced curvature-dimension conditions CD*(K, N) in order to get bet-
ter local-to-global and tensorization properties. Every CD(K, N) space is also CD*(K, N); conversely, every
CD*(K, N) space is proven to be a CD

(
K*, N

)
space where K* = (N−1)K

N for K ≥ 0 (for K < 0, a suitable formula
can be worked out for K*, see Cavalletti [7] and Cavaletti-Sturm [10] for more in this direction. In particular,
CD(0, N) = CD*(0, N). As before, an in�nitesimally Hilbertian CD*(K, N) space is said to be an RCD*(K, N)
space. Recently, a structure theory for RCD*(K, N) spaces has been developed by Mondino-Naber [32]. They
prove that the tangent space is unique almost everywhere. Also fromGigli-Mondino-Rajala [23], we know that
almost everywhere, these unique tangent spaces are actually Euclidean namely isomorphic to

(
Rk , dEuc ,L

)
(k might vary point-wise).

Our �rst goal in this paper is to characterize RCD*(K, N) spaces with 1-dimensional regular set R1. The
setR1 consists of the points where the tangent space is unique and equal toR (for a precise de�nition ofR1,
see De�nition 3.1). We use the structure theory developed by Mondino-Naber [32] and arguments similar to
Honda [26] to prove the following characterization theorem.

Theorem 1.1. Let (X, d,m) be an RCD*(K, N) space for K ∈ R and N ∈ (1,∞). Assume X is not one point and
suppm = X. The following are all equivalent to each other:

1. R1 ≠ ∅,
2. Rj = ∅ for any j ≥ 2,
3. m(Rj) = 0 for any j ≥ 2,
4. X is isometric to R, to R≥0, to S1(r) := {x ∈ R2 ; |x| = r} for r > 0, or to [0, l] for l > 0.

Moreover the measure m is equivalent to the 1-dimensional Hausdor� measure H1 i.e. m can be written in the
form m = e−fH1 for a (K, N)-convex function f (see De�nition 2.1). In particular dimH X ∈ Z≥0 if (X, d,m) is an
RCD*(K, N) space that has R1 ≠ ∅.

A direct corollary is the following:

Corollary 1.2. Let (X, d,m) be an RCD*(K, N) space for K ∈ R and N ∈ [1, 2). Then the statements as in
Theorem 1.1 hold.

Remark 1.3. On Ricci limit spaces, the conditions in Theorem 1.1 are also equivalent to 1 ≤ dimHX < 2
( [17, 27]). So far we do not know whether an RCD*(K, N) space of the Hausdor� dimension n < N has the
regular set Rk, n < k ≤ N or not.

In order to further understand the behaviour of the measure, we �rst show the following important
Bishop-Gromov type inequality for RCD*(K, N) spaces that was previously known for Ricci limit spaces [26].

Theorem 1.4. Let (X, d,m) be ametricmeasure space satisfying RCD*(K, N) condition andm−1, the boundary
measure. For any point x0 ∈ X and any t > 0, we have

m−1(∂Bt(x0)) ≤ 2 · 5N−1 · m(Bt(x0)) SK,N(t)N−1∫ t
0 SK,N(r)N−1 dr

. (1.1)
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LetWE1 be the set of points where there exists a tangent space of the formR ×W for some proper space,
W of strictly positive diameter (for a precise de�nition ofWE1, see De�nition 3.1). Using the Bishop-Gromov
type inequality (Theorem 1.4), we will prove the following.

Proposition 1.5. Let

M1 :=
{
x ∈ X ; lim inf

r→0
m(Br(x))

r = 0
}
.

Then,
WE1 ⊂M1.

and furthermore, if the modulus of continuity of x 7→ m(Br(x))
r is independent of the choice of r ≥ 0 then, M1 is

closed.

Remark 1.6. It has been brought to our attention that recently, a similar result for Ricci limit spaces has been
proven in Chen [15]. The proof in Chen [15] heavily relies on the Hölder continuity of tangent cones along a
minimal geodesic which is a result that is not available in our setting (RCD*(K, N) metric measure spaces).

2 Preliminaries
A metric measure space is a triple (X, d,m) consisting of a complete separable metric space, (X, d), and a
locally �nite complete positive Borelmeasure,m, that is,m(B) < ∞ for any bounded Borel set B and suppm = ̸
∅.

A curve γ : [0, l] → X is called a geodesic if d(γ(0), γ(l)) = Length(γ). We call (X, d) a geodesic space if
for any two points, there exists a geodesic connecting them. A metric space (X, d) is said to be proper if every
bounded closed set in X is compact. It is well-known that complete locally compact geodesic metric spaces
are proper.

We denote the set of all Lipschitz functions in X by LIP(X). For every f ∈ LIP(X), the local Lipschitz
constant at x, |Df |(x), is de�ned by

|Df |(x) := lim sup
y→x

|f (x) − f (y)|
d(x, y) ,

when x is not isolated, otherwise |Df |(x) := ∞.
The Cheeger energy of a function f ∈ L2(X,m) is de�ned as

Ch(f ) := 1
2 inf

lim inf
n→∞

∫
X

|Dfn|2 dm ; fn ∈ LIP(X), fn → f in L2

 .

Set D(Ch) := {f ∈ L2(X,m) ; Ch(f ) < ∞}. It is known that for any f ∈ D(Ch), there exists |Df |w ∈ L2(X,m)
such that 2Ch(f ) =

∫
X |Df |

2
w dm. We say that (X, d,m) is in�nitesimally Hilbertian if the Cheeger energy is

a quadratic form. The in�nitesimal Hilbertianity is equivalent to the Sobolev space W1,2(X, d,m) := {f ∈
L2 ∩ D(Ch)} equipped with the norm ‖f‖2

1,2 := ‖f‖2
2 + 2Ch(f ) being a Hilbert space.

2.1 The curvature-dimension conditions

Let (X, d,m) be a metric measure space and P(X), the set of all Borel probability measures. We denote by
P2(X), the set of all Borel probability measures with �nite second moments.

For any µ0, µ1 ∈ P2(X), the L2-Wasserstein distance is de�ned as

W2(µ0, µ1) := inf


∫
X×X

d(x, y)2 dq(x, y) ; q is a coupling between µ0, µ1


1
2

. (2.1)
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A measure q ∈ P(X × X) that realizes the in�mum in (2.1) is called an optimal coupling between µ0 and µ1.
For every complete separable geodesic space, (X, d), the L2-Wasserstein space, (P2(X),W2), is also a

complete separable geodesic space. We denote by Geo(X), the space of all constant speed geodesics from
[0, 1] to (X, d) with the sup norm and by et : Geo(X)→ X, the evaluation map for each t ∈ [0, 1]. It is known
that any geodesic (µt)t∈[0,1] ⊂ Geo(P2(X)) can be lifted to a measure π ∈ P(Geo(X)), so that (et)]π = µt
for all t ∈ [0, 1]. Given two probability measures µ0, µ1 ∈ P2(X), we denote by OptGeo(µ0, µ1) the space of
all probability measures π ∈ P(Geo(X)) such that (et)]π is a geodesic and (e0, e1)]π is an optimal coupling
between µ0 and µ1.

For given K ∈ R and N ∈ [1,∞), the distortion coe�cients, σ(t)
K,N(θ), are de�ned by

σ(t)
K,N(θ) :=



∞ if Kθ2 ≥ Nπ2,
sin(tθ

√
K/N)

sin(θ
√
K/N)

if 0 < Kθ2 < Nπ2,

t if Kθ2 = 0,
sinh(tθ

√
−K/N)

sinh(θ
√
−K/N)

if Kθ2 < 0.

De�nition 2.1 ((K, N)−convexity of functions). Suppose (X, d) is a geodesic space. A function f : X → R ∪
{±∞} is called (K, N)−convex if for any two points x0, x1 ∈ X and a geodesic xt, 0 ≤ t ≤ 1 joining these points,
one has

exp
(
− 1
N f (xt)

)
≥ σ(1−t)

K,N (d(x0, x1)) exp
(
− 1
N f (x0)

)
+ σ(t)

K,N(d(x0, x1)) exp
(
− 1
N f (x1)

)
.

De�nition 2.2 (CD*(K, N) curvature-dimension conditions). Let K ∈ R and N ∈ (1,∞). A metric measure
space (X, d,m) is said to be a CD*(K, N) space if for any two measures µ0, µ1 ∈ P(X) with bounded support
contained in suppm and with µ0, µ1 � m, there exists a measure π ∈ OptGeo(µ0, µ1) such that for every
t ∈ [0, 1] and N′ ≥ N one has,

−
∫
ρ1− 1

N′
t dm ≤ −

∫
σ(1−t)
K,N′ (d(γ0, γ1))ρ−

1
N′

0 + σ(t)
K,N′ (d(γ0, γ1))ρ−

1
N′

1 dπ(γ),

where ρt for t ∈ [0, 1] is the Radon-Nikodym derivative d(et)]π/dm.

An in�nitesimally Hilbertian metric measure space (X, d,m) that also satis�es CD*(K, N) condition is
called an RCD*(K, N) space. Erbar-Kuwada-Sturm give another characterization of RCD*(K, N) spaces.

Let the relative Entropy functional, Ent(·) be de�ned as

Ent(µ) :=
∫
X

ρ log ρ dm (2.2)

whenever µ = ρm is absolutely continuous with respect to the reference measure, m and (ρ log ρ)+ is inte-
grable. HereD(Ent) denotes the set of all measures µ with Ent(µ) ∈ R.

De�nition 2.3. Let (X, d,m) be ametricmeasure space.We say that (X, d,m) satis�es the entropic curvature-
dimension condition CDe(K, N) for K ∈ R, N ∈ (1,∞) if for each pair µ0, µ1 ∈ P2(X, d,m) ∩ D(Ent), there
exists a constant speed geodesic (µt)t∈[0,1] connecting µ0 to µ1 such that for all t ∈ [0, 1]:

exp
(
− 1
N Ent(µt)

)
≥ σ(1−t)

K,N
(
W2(µ0, µ1)

)
exp

(
− 1
N Ent(µ0)

)
+ σ(t)

K,N
(
W2(µ0, µ1)

)
exp

(
− 1
N Ent(µ1)

)
.

Theorem 2.4 (Theorem 3.17 in [19]). Let (X, d,m) be an in�nitesimally Hilbertian metric measure space. Then
(X, d,m) is a CD*(K, N) space for K ∈ R, N ∈ (1,∞) if and only if (X, d,m) is a CDe(K, N) space.
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Sincewewill use the de�nition of the dimension-less curvature-dimension conditions (namely, CD(K,∞)
conditions) in a few places in this paper, we will recall it here:

De�nition 2.5. Let (X, d,m) be metric measure space. (X, d,m) is said to satisfy the CD(K,∞) condition if
for any µ0, µ1 ∈ P2(X) ∩D(Ent), there exists a geodesic (µt)t∈[0,1] connecting them such that

Ent(µt) ≤ (1 − t)Ent(µ0) + tEnt(µ1) − K2W
2
2 (µ0, µ1) (2.3)

holds for any t ∈ [0, 1]. We say that (X, d,m) satis�es the strong CD(K,∞) condition if (2.3) holds for any
geodesic. Moreover (X, d,m) is called an RCD(K,∞) space if it is in�nitesimally Hilbertian and a CD(K,∞)
space.

An important property of CD*(K, N) spaces is that the disintegration of the givenmeasure with respect to
the radial distance function, can be represented by the one dimensional Lebesgue measure. This fact will be
used in the proof of Lemma 2.13 which in turn is essential in the proof of the characterization theorem. The
precise de�nition and the proof can be found in [10].

Proposition 2.6 (Disintegration of measure, Cavalletti-Sturm [10, Section 3]). Under the CD*(K, N) condition
for K ∈ R, N ∈ (1,∞), for �xed o ∈ X, we are able to disintegrate the given measure m by

m =
∫
mr L

1(dr), (2.4)

where, mr is a Borel measure supported on the set {x ∈ X ; d(x, o) = r} = r−1(r) (in which, r(·) := d(o, ·) is the
distance function from o).

2.2 Convergence of pointed metric measure spaces

A pointed metric measure space is a quadruple (X, d,m, x̄), comprised of a metric measure space, (X, d,m),
and a given reference point x̄ ∈ suppm. Two pointed metric measure spaces (X1, d1,m1, x̄1) and
(X2, d2,m2, x̄2) are isomorphic to each other if there exists an isometry T : suppm1 → suppm2 such
that T]m1 = m2 and Tx̄1 = x̄2. We say that a pointed metric measure space, (X, d,m, x̄), is normalised if∫
B1(x̄) 1 − d(·, x̄) dm = 1. A measure m is said to be doubling if

0 < m(B2r(x)) ≤ C(R)m(Br(x)), (2.5)

holds for any 0 < r ≤ R and x ∈ suppm. We denote by MC(·) the class of all normalised pointed metric mea-
sure spaces satisfying (2.5) for a given non-decreasing function C : (0,∞) → (0,∞). We have the following
compactness and metrizability theorem.

Theorem 2.7 ( [24, 32]). Let C : (0,∞) → (0,∞) be a non-decreasing function. Then, there exists a distance
functionDC(·) onMC(·) such that (MC(·),DC(·)) becomes a compact metric space. Moreover the topology induced
fromDC(·) coincides with the one de�ned by the pointed measured Gromov-Hausdor� convergence onMC(·).

For a given pointed metric measure space (X, d,m, x) with x ∈ suppm and r ∈ (0, 1), we associate the
rescaled and normalised pointed metric measure space (X, dr ,mx

r , x), where dr := d/r and,

mx
r :=

 ∫
Br(x)

1 − 1
r d(x, ·) dm


−1

m.

De�nition 2.8 (Tangent space). Let (X, d,m) be a metric measure space and x ∈ suppm. A pointed metric
measure space (Y , dY ,mY , y) is called a tangent to (X, d,m)at x ∈ X if there exists a sequenceof positivenum-
bers ri ↓ 0 such that (X, dri ,mx

ri , x) → (Y , dY ,mY , y) as i → ∞ in the pointed measured Gromov-Haudsdor�
topology. We denote by Tan(X, d,m, x) the collection of all tangents to (X, d,m) at x ∈ suppm.
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There exists a non-decreasing function C : (0,∞) → (0,∞) depending only on K, N such that all
RCD*(K, N) spaces belong toMC(·) (for instance, see Sturm [37]). Hence for RCD*(K, N) spaces, convergence
with respect toDC(·) and that with respect to the pointed measured Gromov-Hausdor� topology coincide.

Theorem 2.9 ( [24]). Let K ∈ R and N ∈ (1,∞). Then the class of normalized RCD*(K, N) pointed metric
measure spaces is closed (and therefore compact) with respect toDC(·).

It is easy to see that for any λ > 0, (X, λd,m) satis�es the RCD*(λ−2K, N) condition provided that (X, d,m)
is an RCD*(K, N) space. This will imply that Tan(X, d,m, x) consists of RCD*(0, N) spaces for any point x ∈
suppm.

One key tool that is reminiscent of smooth Riemannian setting is the splitting theorem:

Theorem 2.10 (Splitting theorem, Gigli [21, 22]). Let (X, d,m) be an RCD*(0, N) space with 1 ≤ N < ∞. Sup-
pose that supp (m) contains a line. Then (X, d,m) is isomorphic to (X′ × R, d′ × dE ,m′ × L1), where dE is the
Euclideandistance,L1 the Lebesguemeasure and (X′, d′,m′) is an RCD*(0, N−1) space ifN ≥ 2anda singleton
if 1 ≤ N < 2.

From the work of Gigli-Mondino-Rajala [23] and Mondino-Naber [32], it follows that:

Theorem 2.11 ([32],[23]). Let (X, d,m) be an RCD*(K, N) space. Then m-a.e. x ∈ suppm, there exists an in-
teger 1 ≤ k ≤ N such that Tan(X, d,m, x) = {(Rk , dE ,Lk , 0k)}, where Lk is the normalized k-dimensional
Lebesgue measure.

2.3 Essentially non-branching property

Let restrts : Geo(X) → Geo(X) be a restriction map, which is de�ned as restrts(γ)r := γ(1−r)s+rt for r ∈ [0, 1].
A subset Γ ⊂ Geo(X) is called non-branching if for any γ, γ′ ∈ Γ, restrt0(γ) = restrt0(γ′) for some t ∈ (0, 1]
implies γ = γ′. Rajala-Sturm [36] have proven that branching geodesics in RCD(K, N) spaces are rare. Here
we state a special case of their main theorem in [36].

Theorem 2.12. Let (X, d,m) be an RCD(K,∞) space. Then for any µ0, µ1 ∈ P2(X) with µi � m, and any
π ∈ OptGeo(µ0, µ1), there exists a non-branching subset Γ ⊂ Geo(X) such that π(Γ) = 1.

Lemma 2.13. Let (X, d,m) be an RCD*(K, N) space for K ∈ R, N ∈ (1,∞) with suppm = X. Let x, y, z ∈ X
be three points such that d(x, y) = d(x, z) =: l > 0 and d(y, z) > 0. Set two geodesics γ1, γ2 : [0, 1] → X
connecting x and y, x and z respectively. Assume that Br0 (y) ∩ Br0 (z) = ∅ for a small r0 > 0. Let A, B be two
Borel sets de�ned by

A :=
{
w ∈ Br0 (y) ; d(x, w) ≤ l

}
,

B :=
{
w ∈ Br0 (z) ; d(x, w) ≤ l

}
.

Then, m(A)m(B) > 0 and mr(A)mr(B) > 0 for L1-a.e. r ∈ (l − r0, l) where, mr is the measure obtained from m
via disintegration (as in Proposition 2.6).

Proof. Since suppm = X, every open ball is of positive measure. We are able to take points y′ := γ1(1− r0/2l)
and z′ := γ2(1 − r0/2l) so that Br0/2(y′) ⊂ A and Br0/2(z′) ⊂ B. Thus m(A) ≥ m(Br0 (y′)) > 0 and m(B) ≥
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m(Br0/2(z′)) > 0 holds. By using the disintegration of m (see Proposition 2.6), we have

m(A) =
l∫

l−r0

mr(A)L1(dr) > 0,

m(B) =
l∫

l−r0

mr(B)L1(dr) > 0.

Suppose there exists a measurable subset I ⊂ (l − r0, l) with L1(I) > 0 such that mr(A) = 0 for any r ∈ I. The
Claim 2.14 below shows that, in virtue of the measure contraction property, this implies that mr(A) = 0 for
a.e. r ∈ I′ where I′ is a closed interval with positive length.

Therefore we are able to �nd a point ỹ ∈ Im (γ1) and a small number η > 0 such that {l := d(x, w) ∈
R ; w ∈ Bη(ỹ)} ⊂ I′. Hence

0 < m(Bη(ỹ)) =
l∫

l−r0

mr(Bη(ỹ))L1(dr)

=
∫
I′

mr(Bη(ỹ))L1(dr)

≤
∫
I′

mr(A)L1(dr) = 0.

This is a contradiction.

Claim 2.14. Let I be the set,
I :=

{
r ∈ (l − r0, l) : mr(A) = 0

}
. (2.6)

Then, if L1(I) > 0, there exists a closed interval I′ with L1(I′) > 0 such that L1(I′ \ I) = 0.

Proof. We will use the regularity of the Lebesgue measure along with the Measure Contraction Property to
�nd such a closed interval. By the regularity of the Lebesgue measure, for any ϵ > 0, one can �nd a closed set
C and an open set U with C ⊂ I ⊂ U and such that L1(U \ C) < ϵ. First of all, this means that we can assume
I is closed (otherwise, replace it with C and notice that C has positive measure for ϵ small enough).

Claim 2.15 below shows that the measure contraction property implies that the set, I, is invariant under
dilations (in a suitable sense that will bemade clear in below). Let r(·) := d(x, ·) be the distance function from
x.

Claim 2.15. Suppose J ⊂ R is any measurable subset with L1(J) > 0 and∫
J

mr(A)L1(dr) > 0,

then for any 0 < t ≤ 1 with AtJ := A ∩ r−1(tJ) = ̸ ∅, one has

L1 ((tJ) \ I) > 0.

In other words, if L1(J \ I) > 0, then for any 0 < t ≤ 1, one has L1(tJ \ I) > 0 when AtJ ≠ ∅.

Proof. Let (X, d,m) be an RCD*(K, N) space for K ∈ R, N ∈ (1,∞). Take two distinct points x and y with
d(x, y) = l. We denote a geodesic connecting x to y by γ1. Let r0 > 0 be a positive number such that Br0 (y) ∩
Br0 (x) = ∅. We disintegrate m with respect to the distance function, r(·) := d(x, ·), that is,

m =
∫
R≥0

mr L
1(dr).
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For J ⊂ R and V ⊂ X, let VJ := {w ∈ V ; d(x, w) ∈ J}. Note that for any measurable subset V ⊂ X, if
mr(V) > 0 for a.e. r ∈ J with L1(J) > 0 then, m(VJ) > 0 and obviously, m(V) > 0.

Now, let I be themeasurable subset de�ned by (2.6) and assumeL1(I) > 0. Suppose ameasurable subset
J ⊂ (l − r0, l) with L1(J) > 0 satis�es m(AJ) > 0. Let τ ∈ (0, 1) be a number for which, L1((τJ) \ I) = 0 and
AτJ = ̸ ∅. Without loss of generality, we may assume mr(AJ) = mr(A) > 0 for all r ∈ J.

Let π ∈ OptGeo(µ, δx), where µ := χAJm/(m(AJ)) ∈ P(X). Note that by construction, µ � m. Hence
we are able to �nd a map Tt : X → X such that (Tt)*µ = µt = (et)*π, which is a geodesic from µ to δx (see
Gigli-Rajala-Sturm [25, Theorem 1.1]). SinceL1((τJ) \ I) = 0 (i.e. τJ is a subset of I in a.e. sense), we must have
mr(A) = 0 for a.e. r ∈ τJ. Accordingly,

m(AτJ ∩ T1−τ(AJ)) ≤ m(AτJ) =
∫
τJ

mr(A) dr = 0. (2.7)

Now, we consider two di�erent cases:
Case I: Suppose there exists a measurable subset B ⊂ AJ with m(B) > 0 (hence (e0)*π(B) = µ(B) =

m(B)/m(AJ) > 0) such that for π-a.e. geodesic cw connecting w ∈ B to x, one has cw1−τ ∈ A which readily
implies that cw1−τ ∈ AτJ . By the MCP condition, we have m(T1−τ(B)) > 0. More precisely, since (e0)*π(B) is
positive, so is (e1−τ)*π(T1−τ(B)). This means that m(AτJ ∩ T1−τ(AJ)) ≥ C(e1−τ)*π(T1−τ(B)) > 0 which contra-
dicts (2.7).

Case II: Suppose for anymeasurable subset B ⊂ AJ withm(B) > 0 one has for π-a.e. geodesic cw connect-
ing w ∈ B to x, cw1−τ ∈ Ac. This implies that for π-a.e. c ∈ Geo(X), one has c1−τ ∈ Ac. Recall that we denote
the geodesic connecting from x to y by γ1. We claim that there exists s0 > 0 such that γ1

s0 ∈ AτJ (namely, γ1
intersects AτJ). Indeed, suppose γ1

s /∈ AτJ for all s ∈ [0, 1] (equivalently, γ1
s ∈ Ac whenever d(x, γ1

s ) ∈ τJ). By
the assumption AτJ ≠ ∅, there exists a point w ∈ AτJ . It is obvious that d(x, w) ∈ (l − r0, l) for such w ∈ AτJ .
Since γ1 is a geodesic from x to y, we can �nd a point γ1

s such that d(x, γ1
s ) = d(x, w) ∈ τJ. However, γ1

s /∈ AτJ
means d(x, γ1

s ) < l − r0 which is a contradiction.
We have γ1

s0 ∈ AτJ . SinceL1(J) > 0, wemay assume that inf τJ < d(x, γ1
s0 ) and in particular 0 < d(y, γ1

s0 ) <
r0, which also implies d(Ac , γ1

s0 ) > 0. This is true since by the Lebesgue density theorem, at almost every
point t ∈ τJ, one has

lim
κ→0

L1(τJ ∩ (t − κ, t + κ))
L1((t − κ, t + κ)) = 1.

Hence, taking a Lebesgue point t ∈ τJ greater than inf τJ, and repeating the above argument for J′ = τJ ∩
(t − ϵ, t + ϵ) = τJ′′ with ϵ < t − inf τJ, we are able to take a point γ1

s0 satisfying inf τJ < d(x, γ1
s0 ).

Let s0 = t0τ, then obviously, γ1
t0 ∈ AJ . Without loss of generality, we may assume that t0 = d(x, γ1

t0 ) ∈ J is
a Lebesgue point in J (otherwise, one can repeat the above arguments by replacing Jwith its Lebesgue points).
Let ξ > 0 be a positive number such that

2ξ < min
{
r0 − d(γ1

s0 , y), t0 − s0
}
.

Consider a ball Bξ (γ1
t0 ) ⊂ A. By the construction, Bξ (γ1

s0 )∩Bξ (γ1
t0 ) = ∅. Since Bξ (γ1

t0 ) ⊂ A and t0 = d(x, γ1
t0 ) ∈ J

is a Lebesgue point in J, we havem(AJ∩Bξ (γ1
s0 )) > 0. This implies (e0)*π(AJ∩Bξ (γ1

s0 )) > 0. By the assumption,
for π-a.e. c ∈ Geo(X), c1−τ ∈ Ac. That is, for (e0)*π = m-a.e. wJ ∈ AJ ∩ Bξ (γ1

s0 ), one has w := T1−τ(wJ) ∈ Ac.
Note that for all wJ ∈ AJ ∩ Bξ (γ1

s0 ) and their corresponding w := T1−τ(wJ) ∈ Ac, one has

d
(
wJ , w

)
= (1 − τ)d(x, wJ) ≤ (1 − τ)(d(x, y)t0 + ξ )

≤ d(x, y)(t0 − τt0) + ξ = d(x, y)(t0 − s0) + ξ
= d(γ1

t0 , γ1
s0 ) + ξ .
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Therefore, we obtain

d(x, y) ≤ d(x, w) + d(w, wJ) + d(wJ , γ1
t0 ) + d(γ1

t0 , y)
< l − r0 + d(γ1

t0 , γ1
s0 ) + ξ + ξ + d(γ1

t0 , y)
< l − r0 + 2ξ + d(γ1

s0 , y)
< l = d(x, y).

which is a contradiction.

Claim 2.16 (invariance of I under dilations). For any 0 < t ≤ 1 and up to a set of measure zero, one has(
1
t I
)
∩ (l − r0, l) ⊂ I.

In other words, inside the interval (l − r0, l), I is invariant under dilations. In particular, for t � 1, we get
t−1I ∩ (l − r0, l) = ∅ ⊂ I and for t = 1, we have I ∩ (l − r0, l) = I.

Proof. Suppose not. Then, there exists 0 < t′ < 1 such thatL1 (( 1
t′ I
)
∩ (l − r0, l)

)
> 0 and

( 1
t′ I
)
∩ (l − r0, l) ̸⊂ I

(in a.e. sense). By Claim 2.15, taking J := tI, where t′ = 1
t < 1 and t = 1

t′ > 1, we would have

L1 ((t′J) \ I) > 0 (and also tJ ⊄ I),

which means
t′ (l − r0, l) ∩ I ⊄ I,

which is obviously a contradiction.

Now to �nish the proof of the Claim 2.14, suppose, s ∈ I is a Lebesgue density point of I. This means

lim inf
δ→0

L1 ([s − δ, s + δ] \ I
)

2δ = 0.

For any ϵ > 0, choose δ > 0 such that

L1 ([s − δ, s + δ] \ I
)
< 2ϵδ.

Let Iϵ := [s − δ, s + δ] ∩ I. Then, by Claim 2.16, one has

L1 ((tIϵ) ∩
[
(l − r0, l) \ I

])
= 0, ∀ t ≥ 1.

Then for any t ≥ 1, using the scaling property of the Lebesgue measure, and the scale invariance of I, we can
compute

L1
((
t[s − δ, s + δ] \ I

)
∩ (l − r0, l)

)
≤ L1 (t ([s − δ, s + δ] \ I

)
∩ (l − r0, l)

)
< tϵδ,

indeed, by the invariance of I under dilations, we have tI ∩ (l − r0, l) ⊂ I and this then would imply that(
t[s − δ, s + δ] \ I

)
∩ (l − r0, l) ⊂

(
t[s − δ, s + δ] \ tI

)
∩ (l − r0, l) = t

(
[s − δ, s + δ] \ I

)
∩ (l − r0, l) .

Now for k satisfying

(s + δ)k−1

sk−2 < l ≤ (s + δ)k
sk−1 ,

we can write

[s, l] ⊂ [s, s + δ] ∪
[
s + δ, (s + δ)2

s

]
∪
[

(s + δ)2

s , (s + δ)3

s2

]
∪ . . .

[
(s + δ)k−1

sk−2 , (s + δ)k
sk−1

]
⊂

k−1⋃
i=0

(s + δ)i
si

[s, s + δ]
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Hence,

m
(

[s, l] \ I
)
≤ m

(k−1⋃
i=0

(
(s + δ)i
si

[s, s + δ] \ I
))

≤
k−1∑
i=0

m
(

(s + δ)i
si

[s, s + δ] \ I
)

≤
k−1∑
i=0

(
s + δ
s

)i
ϵδ

=

(
s+δ
s

)k
− 1

s+δ
s − 1

ϵδ

= s
((

s + δ
s

)k
− 1
)
ϵ

≤ s
(

(s + δ)l
s2 − 1

)
ϵ. (2.8)

In above, the last inequality follows from the de�nition of k since,(
s + δ
s

)k
= (s + δ)k−1

sk−2 · s + δ
s2 ≤ l · s + δ

s2 .

Therefore, �rst letting δ → 0, and then ϵ → 0 in (2.8), we get

L1 ([s, l] \ I) = 0.

This argument can be applied to any Lebesgue density point, s, in I (and we know almost every point of I is
so). So, with a little bit more work, one can in fact prove that if s0 := inf I, then

L1 ([s0, l] \ I
)

= 0.

Remark 2.17. The conclusion of Claim 2.14 is obviouslywrong for arbitrarymetricmeasure spaces (one needs
MCP or some sort of curvature conditions. ). The following is a counterexample: Let C ⊂ [0, 1] be a closed
nowhere dense Cantor set with positive Lebesgue measure (such sets exist). Take the isometric product X =
[0, 1] × [0, 1] with measure ι]L1 × L1 where ι : C ↪→ [0, 1] is the inclusion.

Remark 2.18. One canweaken the assumptions in Lemma 2.13. It is not essential to assume d(x, y) = d(x, z).
We just need two sets A and B that are included in {w ∈ X ; r1 ≤ d(x, w) ≤ r2} for a pair of numbers
0 < r1 < r2 < ∞.

3 Proof of the characterization theorem
Let (X, d,m) be a metric measure space. Then, the RCD*(K, N) condition for K ∈ R and N ∈ (1,∞), or more
precisely, the locally doubling condition will imply that m satis�es m(U) > 0 for any open set U ⊂ suppm.
For brevity, when there is no confusion, we will denote Tan(X, d,m, x) by just Tan(X, x).

De�nition 3.1. We de�ne the following subsets of X based on the point-wise structure of the tangent space:

WEk :=
{
x ∈ X ; There exist proper metric measure spaces (Y , y) ∈ Tan(X, x),

and (W , w) with DiamW > 0 s.t. Y = Rk ×W
}
,

Rj :=
{
x ∈ X ; Tan(X, x) = {(Rk , 0k)}

}
.
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And R := ⋃j≥1 Rj.

It is known that m
(
X \R

)
= 0 for an RCD*(K, N) space (X, d,m) (see [32]).

Lemma 3.2. Let (X, d,m) be an RCD*(K, N) space for K ∈ R and N ∈ (1,∞). Let x ∈ X be a point and
suppose γ is a geodesic joining two points p, q ∈ X \{x} that also passes through x. Suppose there exists a point
z /∈ Im (γ) with d(z, x) = d

(
z, Im (γ)

)
. Then, there exists a pointed proper geodesic metric measure space,

(W , dW ,mW , w), with diamW > 0 such thatR×W ∈ Tan(X, x). In fact, every tangent is of the form,R×W with
diamW ≥ 0 andW depending on the tangent.

Proof. Let η : [0, d(z, x)] → Z be a geodesic from z to x. We have d(η(t), x) = d
(
η(t), Im (γ)

)
for all t ∈

[0, d(z, x)]. For n > 1
d(x,z) , set zn := η(tn) where tn is the in�mum of the numbers t such that η(t) ∈ B1/n(x).

Then obviously, zn ∈ ∂B1/n(x). Set wn := η(tn + (d(z, x)− tn)/2) and notice that d(x, wn) +d(wn , zn) = d(x, zn)
holds for any n ∈ N. Denote by dn, the normalized metric d/n. A simple calculation using the local doubling
property implies

m
(
Bdn1/2(wn)

)
≥ C(K, N)m

(
Bdn2 (wn)

)
≥ C(K, N)m

(
Bdn1 (x)

)
.

So, there exists a positive constant C > 0 such that mx
n(Bdn1/2(wn)) ≥ C for any n ∈ N, where, mx

n is the
normalized measure with respect to dn at x. Thus, in the virtue of the splitting theorem, we deduce that a
subsequence of the pointed normalized metric measure spaces (X, dn ,mx

n , x) converges to a product space
(R × W , dR×W ,L1 × mW , (0, w)) where, (W , dW ,mW , w) is a proper pointed geodesic metric measure space
with diamW > 0 and with mW = ̸ 0.

Lemma 3.3. For an RCD*(K, N) space, (X, d,m), with N ∈ [1, 2), we haveWE1 = ∅.

Proof. Suppose not. Then, by the de�nition, for x ∈WE1, there exists a proper metric measure space (W , w)
with diamW > 0 such that (R × W , (0, w)) ∈ Tan(X, x). The stability of RCD* condition under DC(·) implies
thatR×W is an RCD*(0, N) space. The splitting theorem then implies thatW is one point (see Theorem 2.10).
This is in contradiction with the assumptions onW.

De�nition 3.4 (interior point). A point x ∈ X is called an interior point if there exists a geodesic γ : [0, l]→ X
with γ(t) = x for some t ∈ (0, l).

Proposition 3.5. Let x ∈ R1. Then x is an interior point.

Proof. The proof is similar to the proof of Proposition 4.1 in Honda [27]. Suppose that there exists a point
x ∈ R1 such that x is not an interior point on a geodesic.

Claim 3.6. For a given sequence of decreasing positive numbers {ϵi}, there exist sequences of increasing
numbers {Ri} tending to in�nity and decreasing positive numbers {ri} tending to 0 such that one can pick
pi , qi ∈ X that satisfy

|d(pi , x) − Riri| < riϵi , |d(qi , x) − Riri| < riϵi ,
and,

d(pi , x) + d(qi , x) − d(pi , qi) < riϵi .
Proof. First of all, rescaling the metric if necessary, we may assume that Diam X > 1. By Theorem 4.1 in [32],
there exists a number β = β(N) > 2 with the following property: there exists a large number R̃i � 1 such that
for any R ≥ R̃i there exist 0 < ri = ri(ϵi , R)� 1 and points p̃i , q̃i ∈ B

dri
Rβ (x) \ BdriRβ/4(x) and also ξi ∈ B

dri
Rβ (x) on a

geodesic ci connecting p̃i to q̃i with d(x, ξi) < riϵi/2 that satisfy

d(p̃i , x) + d(q̃i , x) − d(p̃i , q̃i) ≤ 2d(x, ξi) < riϵi .

Since R ≥ R̃i � 1 is arbitrary, we may assume that R ≤ Rβ/8 (this is always true for R ≥ 4). Put Ri satisfying
R̃i ≤ Ri ≤ Rβi /8 and Ri ≤ Ri+1. Take points pi , qi ∈ X with the following properties:
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1. pi , qi ∈ Im (ci) and pi , qi are on opposite sides of ξi,
2. d(pi , p̃i) ≤ d(pi , q̃i) and d(qi , q̃i) ≤ d(qi , p̃i)
3. |d(pi , x) − Riri| < riϵi , & |d(qi , x) − Riri| < riϵi
Notice that one can always �nd such points pi and qi on the geodesic ci since, d(x, ξ̃i) < riϵi/2, d(x, p̃i) ≥
Rβi /4, d(x, q̃i) ≥ Rβi /4 and the distance function is continuous.

Since d(pi , x) ≤ d(pi , ξ̃i) + d(x, ξ̃i), d(qi , x) ≤ d(qi , ξ̃i) + d(x, ξ̃i), and d(pi , ξ̃i) + d(ξ̃i , qi) = d(pi , qi), we
obtain

d(pi , x) + d(qi , x) − d(pi , qi) ≤ d(pi , ξ̃i) + d(qi , ξ̃i) + 2d(x, ξ̃i) − d(pi , qi) = 2d(x, ξ̃i) < riϵi .

This is what we wanted to prove in this claim.

Pick pi , qi ∈ X as in Claim 3.6. Let γi : [0, d(pi , qi)] → X be a geodesic from pi to qi. Set si := d
(
x, Im (γi)

)
.

By the assumption,
0 < si = d

(
x, Im (γi)

)
< riϵi .

This means that si → 0 as i → ∞. Using the pre-compactness, a subsequence (X, s−1
i d,mx

si , x), converges to
a limit space (Y , dY ,mY , y). Now, our construction implies that there exist a limit point, z ∈ ∂B1(y), corre-
sponding to a sequence of points, zi ∈ ∂Bsi (x), with d

(
x, Im (γi)

)
= d(x, zi). Now, in the si− rescaled spaces,

that
s−1
i d(pi , x) & s−1

i d(qi , x)→∞ as i →∞,
so that γi converges to a line in Y. Thus, we get an isometric embedding L : R → Y such that z ∈ Im (L) and
y /∈ Im (L). This implies that Y = R ×W for some proper geodesic space with diamW > 0 which contradicts
x ∈ R1.

The following theorem is key.

Theorem 3.7. Let (X, d,m) be an RCD*(K, N) space for K ∈ R and N ∈ (1,∞). AssumeR1 ≠ ∅. For any x ∈ X,
there exists a positive number ϵ > 0 such that (Bϵ(x), x) is isometric to

(
(−ϵ, ϵ), 0

)
or to

(
[0, ϵ), 0

)
.

Proof.

1. x ∈ R1. Since x ∈ R1 is an interior point, there exists a geodesic γ : [−ϵ, ϵ]→ X with γ(0) = x. Suppose
that for any η > 0, the set Bη(x) \ Im (γ) is non-empty. Without loss of generality, we may assume

η ≤ 10−10 min
{√

2 log 2
3|K| + 1 , ϵ

}
.

By the assumption, we are able to take yn ∈ Bη/n2 (x) \ Im (γ) and zn ∈ Im (γ) so that d(zn , yn) = d(yn , Im (γ)).
By Lemma 3.2, zn ≠ x for n large enough.Wemay assume zn ∈ P := {γt ; t > 0}. Now take wn ∈ N := {γt ; t <
0} so that

d(wn , x) = d(zn , x).

Set ln := d(zn , yn). Then by using the doubling property (also see the proof of Lemma 3.2), we have
m(Bln/2(yn)) > 0 and Bln/2(yn) ∩ Im (γ) = ∅.

Let θ be a unit speed geodesic from yn to zn and set

αn := 1/2 min{d(x, zn), ln/n2}.

Then, for some k ≥ 2, ln > η/kn2 and θ(ln − η/kn2) ∈ Bαn (zn) \ Im (γ) (otherwise, one can �nd a point on γ
that is strictly closer to yn than zn is). Therefore, Bαn (zn) \ Im (γ) is non-empty. And by the doubling property,

m
(
Bαn (zn) \ Im (γ)

)
≥ m

(
Bαn/4(θ(ln − η/kn2))

)
≥ Cm

(
B100η(θ(ln − η/kn2))

)
≥ Cm(Bη(zn)) > 0.
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Claim 3.8. There exists a point xn ∈ Bαn (zn) and a geodesic cn : [0, 1]→ X connecting wn and xn such that
d(x, Im (cn)) > 0.

Proof of Claim. To prove the claim, we are going to use an argument similar to the one in Rajala-Sturm[36].
FromRajala-Sturm [36],weknow that the optimal transport betweenany twoabsolutely continuousmeasures
in a space satisfying strong CD(K,∞) condition is concentrated on non-branching geodesics.

The idea of the proof is that if there exists a π ∈ OptGeo(µ1, µ0) (for absolutely continuous µi ∈ P2(X))
that doesnot live onnon-branchinggeodesics, then via restriction in timeand space andusingdisintegration,
one can�nd ameasureM onGeo(X)×Geo(X) and a family of geodesic pairs Γa ⊂ Geo(X)×Geo(X) (a ∈ (0, 1))
withM(Γa) > 0 and

m (e0 (p1 (Γa)))m (e0 (p2 (Γa))) > 0,

where, the geodesic pairs in Γa satisfy the following conditions: there exists a su�ciently small ξ > 0 such
that restra0γ1 = restra0γ2 and restra+ξ

0 γ1 ≠ restra+ξ
0 γ2 for any (γ1, γ2) ∈ Γa. Then, writing down the K−convexity

conditions for the entropy of the transportation from e0(p1(Γ))∪e0(p2(Γ)) to e1(p1(Γ))∪e1(p2(Γ)), one proves
that the underlying space fails to satisfy the strong CD(K,∞) condition.

To prove Claim 3.8, we are going to prove that the assumption that every geodesic connecting wn to a
point xn ∈ Bαn (zn) passes through x and the fact that m

(
Bαn (zn) \ Im (γ)

)
> 0 would provide us with such

family of "bad" geodesics and that would lead to a contradiction.
Suppose for wn ∈ N ∩ Bη/n2 (x) and for any geodesic cn connecting wn to a point xn ∈ Bαn (zn), there

exists a time t ∈ (0, 1) such that cn(t) = x. Consider µ0 := δwn and µ1 := χBαn (zn)m/m(Bαn (zn)). By Theorem
1.1 and Corollary 1.6 in Gigli-Rajala-Sturm [25], one could �nd a unique π̃ ∈ OptGeo(µ1, µ0) that is induced
by a map. The optimal plan π̃ also satis�es (et)]π̃ � m for any t ∈ [0, 1). De�ne a map σ : Geo(X)→ Geo(X)
by σ(γ)t := γ1−t. Let π denote the measure σ]π̃. Then, π satis�es µt := (et)]π � m for any t ∈ (0, 1] and µt is
a geodesic connecting µ0 to µ1.

Note that π is supported on the branching subset Γ ⊂ Geo(X) of geodesics starting o� as γ. Indeed, since
Bαn (zn)\Im (γ) ≠ ∅, one canpick a small ball B ⊂ Bαn (zn)\Im (γ)with0 < m(B) < 1

2m
(
Bαn (zn) \ Im (γ)

)
. Let g :

X → R be the distance function, g(x) = d(wn , x). Thus by the inclusion relation, g(B) ⊂ g
(
Bαn (zn) \ Im (γ)

)
holds. Now, by assumption we know that for almost every geodesic θ in the support of π, there is a time, tθ,
such that θ(tθ) = x. We replace θ, up to time tθ, by γ|[0,tθ ]. Also, notice that, for this family of geodesics, the
branching time parameters, a and ξ can be chosen as follows:

0 < a := d(wn , x)
d(wn , zn) + αn

≤ tθ = d(wn , x)
d(wn , xn) ≤

d(wn , x)
d(wn , zn) − αn

=: a′ = a + ξ .

Therefore, by the uniqueness of π, and from the proof of Lemma 2.13 and the above argument, we deduce that
there exist two subsets Γ1, Γ2 ⊂ supp π with π(Γ1)π(Γ2) > 0 such that for any γ1 ∈ Γ1, there exists γ2 ∈ Γ2
with restra0γ1 = restra0γ2 and γ1(1) ∈ B, γ2(1) ∈ Bαn (zn) \ Im (γ).

By restricting and rescaling π, we obtain a restricted plan π that is supported on branching geodesics
(with the abuse of notation, we will also denote this restricted measure by the same character , π).

Now, we have at our disposal, all the ingredients needed for the arguments in Rajala-Sturm [36] to work.
So, employing the exact same arguments as in Rajala-Sturm [36], one obtains two measures πu , πd with the
following properties :

1. β := πu(Geo(X)) = πd(Geo(X)).

2. There exist a time a ∈ (0, 1) and su�ciently small ξ > 0 with a + ξ < 1 such that (es)]πu = (es)]πd for any
s ∈ [0, a] and µda+ξ := (ea+ξ )]πd/β, µua+ξ := (ea+ξ )]πu/β are mutually singular with respect to each other.

3. For �xed small number b > 0, there exists a positive number C > 0 such that

d(eb)]πd
dm , d(e1)]πd

dm , d(e1)]πu
dm ≤ C.
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4. Set µua+ξ = ρua+ξm. Then ∫
ρua+ξ log ρua+ξ dm ≥ β log ξ

10m(x, η/2) . (3.1)

Exploiting the K-convexity of the entropy along the plan (πu + πd)/(2β) from b to a + ξ (in a similar fashion
as in Step 7 in [36]), we will get a contradiction. See the Appendix A for detailed computations.

The proof of Claim 3.8, in fact, implies that form-a.e. xn ∈ Bαn (zn) and for π-almost every geodesic θ, connect-
ing wn to the point xn ∈ Bαn (zn), we know θ does not pass through x. Thus we �nd the family of geodesics,
{cn}n∈N, from wn to a point xn ∈ Bαn (zn) with d(x, Im (cn)) > 0.

Moreover, wemay assume that π-a.e. geodesics, cn do not intersectP since, otherwise, one could replace
the geodesic cn that intersect P with the geodesics, c̃n given by

c̃n(t) :=
{
γ(t) if cn(s) /∈ Im (γ) for any 0 < s < t
cn(t) otherwise

.

Now, the collection of c̃n’s would form a family of geodesics from wn to xn of positive π-measure and passing
through x, this is in contradiction with the uniqueness of π and the proof of Claim 3.8.

So far, we have that π-almost every geodesic does not pass through x and does not intersect P. Pick one
of these good geodesics cn.

Let Ln denote the distances d(x, wn) = d(x, zn). We get

0 < d(x, Im (cn)) ≤ d(x, zn) = Ln → 0.

Let us consider the rescaled metric measure space (X, dLn ,mx
Ln , x). Since x ∈ R1, we have XLn → R (taking

subsequence if necessary). Let fn : XLn → R be the approximation maps that realize the convergence XLn →
R. Since (X, dLn ,mx

Ln , x) → (R, dE ,L1, 0), there exist points on each Im (cn) that converge to 0 ∈ R and
consequently any sequence of points, cn(tn) with d

(
x, cn(tn)

)
= d

(
x, Im (cn)

)
also has to converge to x. Thus,

we are able to �nd a sequence tn such that cn(tn) satis�es d(x, cn(tn)) = d(x, Im (cn)) and fn(cn(tn))→ 0 ∈ R.
Indeed, every point cn(t) obviously satis�es

d(x, cn(t)) ≤ d(x, wn) + d(wn , cn(t)) ≤ d(x, wn) + d(wn , xn) + d(xn , zn) ≤ 4Ln .

Therefore, lim sup dLn (x, cn(t)) < ∞. This means that the image of the geodesic cn approaches to Im (γ) as
n →∞ in the Ln-scale. Also since dLn (x, wn) = dLn (x, zn) = 1, cn(tn) does not go closer to neither wn nor zn .

De�ne sn := d(x, cn(tn)) and consider (X, dsn ,mx
sn , x). If

lim inf
n→∞

dsn (Im (γ), cn(tn)) > 0,

we �nd a point in the limit space that is not on the geodesic corresponding to Im (γ). This is a contradiction
to x ∈ R1.

On the contrary, suppose

lim inf
n→∞

dsn (Im (γ), cn(tn)) = 0.

This means points cn(tn) are converging to a point on γ in the sn−scale. Assume that cn(tn) converges to a
point in P in the sn-scale (the case, cn(tn) converging to a point in N in the sn-scale can be ruled out in a
similar fashion). Pick times t′n such that t′n ≤ tn and d(cn(t′n), cn(tn)) = sn. It is easy to see that we can �nd
such a point cn(t′n) since the assumption that cn(tn) converges to a point in P implies d(wn , cn(tn)) > sn for n
large enough. By the construction, d(x, cn(t′n)) ≥ d(x, cn(tn)) = sn. Hence dsn (x, cn(t′n)) ≥ 1. Since x ∈ R1 and
dsn (cn(t′n), cn(tn)) = 1, cn(t′n) converges to a point on Im (γ) in the sn-scale.

Let a := limn hn(cn(t′n)) ∈ R, where hn : Xsn → R are approximation maps. Since dsn (cn(t′n), cn(tn)) = 1,
a = 0 or a = 2. If a = 2, this contradicts the minimality of cn. Thus a = 0. Note that

d(x, cn(t′n)) ≤ d(x, cn(tn)) + d(cn(tn), cn(t′n)) ≤ 2sn .
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Hence Kn := d(x, cn(t′n)) satis�es sn ≤ Kn ≤ 2sn. Consider (X, dKn ,mx
Kn , x). Taking a subsequence if necessary,

we know XKn → R via the approximation maps gn : XKn → R. Since x ∈ R1, dKn (x, cn(t′n)) = 1, and sn ≤ Kn ≤
2sn, dKn (cn(t′n), Im (γ))→ 0 and gn(cn(t′n))→ −1 or 1 ∈ R. However, again by sn ≤ Kn ≤ 2sn, dKn (x, cn(t′n)) ≤
2dsn (x, cn(t′n))→ 0. This is a contradiction.

Now, Consider pointed normalized metric measure spaces (X, s−1
n d,mx

sn , x) that converge to
(Y , dY ,mY , y) ∈ Tan(X, x) in the measured Gromov-Hausdor� sense. By the rescaling, it is clear that
(Y , y) is not isomorphic to (R, 0). This contradicts x ∈ R1.

2. x ∈ X \R1. SinceR1 ≠ ∅, one can �nd a point y ∈ R1. By the proof of (1) above, a neighbourhood of any
such y is isometric to an open interval. Therefore, R1 is an open set. If R1 is closed, then X must be R1 itself.
This contradicts the existence of x ∈ X \R1. Note thatR1 is an open 1− dimensional manifold. If the open set
R1 is a circle, take a point, p in the circle that is the closest point from x, Lemma 3.2 implies that there exist
a tangent cone at p that is not isometric to R. This is a contradiction (one can also see the contradiction by
noticing that a circle is closed).

The maximal connected open subset in R1, which contains y ∈ R1, is a locally minimizing curve γ :
(−a, b) → X, a, b ∈ (0,∞], which satis�es γ0 = y. Furthermore, γ−a := limt→−a γt and γb := limt→b γt when
a, b = ̸ ∞, do not belong toR1. Locally, a neighbourhood of each point inR1 is isometric to (−ϵ, ϵ). Thismeans
the maximal connected subset in R1 should be a local minimizing unit speed geodesic.

Just to make it more clear, we can argue as follows: Let γ : (−a, b) → R1 ⊂ X be a locally minimizing
curvewith γ(0) = y ∈ R1. If p = γ(t1) = γ(t2) for some t1, t2 ∈ (−a, b) and t1 ≠ t2, then since a neighbourhood
of p ∈ R1 is isometric to an interval, we deduce that γ has to be periodic (after trivially expanding its domain
to R) so γ ⊂ R1 is a circle. But as we previously showed, this can not happen.

Therefore, from the argument above,we can assume γ has no self-intersections and can be extended from
either end in a locally minimizing fashion as long as a (or b) stays �nite. Suppose (−a, b) (a, b ∈ R∪ {∞}) is
the maximal domain for the locally minimizing curve γ. Then, if b < ∞ (respectively a < ∞), we must have
γb := limt→b γt ̸∈ R1 (respectively γ−a := limt→−a γt ̸∈ R1) since otherwise, one can extend γ further and in
a locally minimizing fashion.

When both a and b are∞, consider a point , z on γ with d(x, z) = d(γ, x). Then, Lemma 3.2 implies that
z /∈ R1 which is a contradiction.

Without loss of generality, we assume b < ∞. Consider a geodesic θ : I → X from x to a point z ∈ Im (γ)
that satis�es d(x, z) = d

(
x, Im (γ)

)
. If z = γt for t ∈ (−a, b), we will get a contradiction by part (1) or by using

Lemma 3.2 (in this case, there exists a tangent cone at z which is not R). Without loss of generality, we may
assume that z = γb /∈ R1. Suppose x ≠ z. Notice that for any η > 0, Bη(z)\

(
Im (γ) ∪ Im (θ)

)
≠ ∅ since, otherwise

a neighbourhood of z would be isometric to an open interval. Indeed, Bη(z) \
(

Im (γ) ∪ Im (θ)
)

= ∅ implies
that a neighbourhood of z is just the concatenation of two minimal geodesics, γ and θ; also every geodesic
joining two points in B η

10
(z) is included in Bη(z) therefore, B η

10
(z) is isometric to (− η

10 ,
η

10 ). This means z ∈ R1
which we know is not the case.

In particular, the above argument ensures us that if x = ̸ z, one must have Bη(z) \
(

Im (γ) ∪ Im (θ)
)

≠ ∅ for
any η > 0. Take apointw ∈ Bη(z)\(Im (γ)∪Im (θ)) and consider a geodesic α fromw to the point v ∈ Im (γ) that
satis�es d(w, v) = d

(
w, Im (γ)

)
. Since γt ∈ R1 for t ∈ (−a, b), v = ̸ γt for t ∈ (−a, b); this means v = z = γb.

From now on, we just repeat a similar argument as in the case (1). For the sake of completeness, we give
an outline of the proof. Take a point z′ ∈ R1, which is close enough to z. In order to apply the argument in
(1), we may assume that

d(y, z′), d(x, z′), d(w, z′)� 10−10
√

2 log 2
3|K| + 1 .

Take
r := min{d(x, z′), d(w, z′), d(x, w), d(w, Im (θ))}/4,

and de�ne A := Br(x)∪Br(w). Note that Br(x)∩Br(w) = ∅. By considering the optimal transportation between
µ0 := m|A/m(A) and µ1 := δy, we are able to �nd a curve c from y to a point in A not passing through z′. This
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means that there exists a point in z′ = γt = cs for t ∈ (0, b), s ∈ (0, 1) such that cs′ /∈ Im (γ) for any s′ > s.
This contradicts that z′ = γt ∈ R1. Therefore x = z.

Thismeans that x has to be the endpoint (after taking the closure of the geodesic) of the geodesic, γ ⊂ R1.
Hence Bϵ(x) is isometric to [0, ϵ) for su�ciently small ϵ > 0.

Remark 3.9. We note that in the proof of Claim 3.8, the geodesics are not branching at the same time but
they are all branching within a tiny time interval [a, a′] the length of which going to zero as n → ∞ and
that is enough to get a contradiction. Another possible approach would perhaps be to non-linearly contract
the geodesics toward wn so that all branch at the same time and then use the measure contraction prop-
erty to get a contradiction. The di�culty in this approach is that since all geodesics are of constant speed
and parametrized on [0, 1], when we perform such a non-linear contraction, we will end up with a family of
geodesics that branch at the same time but their end points will all be on a sphere with center wn. This con-
tradicts the measure contraction property or the spherical Bishop-Gromov inequality in, for example, non-
collapsed Ricci limit spaces of dimensions strictly larger than 1. But in the setting of RCD*(K, N) spaces, it is
unclear to the authors how to derive a contradiction having a family of branching constant speed geodesics
parametrized on [0, 1] (all branching at the same time) with end points on a sphere. To the best of authors’
knowledge, a spherical Bishop-Gromov volume comparison or measure contraction property (i.e. a volume
comparison or measure contraction property for the co-dimension 1 measures) is yet not available in this
setting. Also notice that even in the simplest example of the letter "Y" space (the tripod), the geodesics em-
anating from one point on one branch and going to other two branches, once parametrized on [0, 1] , are
branching at di�erent times (depending on their lengths).

Remark 3.10. In Theorem 3.7, we have in fact proven the stronger fact that in any RCD*(K, N) metricmeasure
space, R1 is an open and convex (convexity follows from arguments in the proof of part (2)) subset. In Ricci
limit spaces, the convexity of all the regular sets follow from the recent developments by Naber and Colding
but to the best of our knowledge, in the metric measure setting, this is not known (at least for Rk, k ≥ 2).

De�nition 3.11. Let (X, d) be a geodesic, proper complete separable metric space. A positive Radonmeasure
µ on X is a reference measure (in the sense of Cavalletti-Mondino [8]) for (X, d) provided it is non-zero, and
µ-a.e. z ∈ X there exists πz, which is a positive Radon measure on X × X, such that

(p1)]πz = µ, πz(X × X \ H(z)) = 0, (p2)]πz � µ,

where pi : X × X → X is the natural i-th projection maps i = 1, 2 and

H(z) :=
{

(x, y) ∈ X × X ; d(x, y) = d(x, z) + d(z, y)
}
.

The measure πz is called an inversion plan. lp(µ) is the set of all points z ∈ X that has an inversion plan πz.

Proposition 3.12. Let (M, g) be a complete Riemannian manifold of dimension 1 and let dg ,mg be the Rie-
mannian distance function and the Riemannian volume measure associated with g (respectively). Let µ be a
locally �nite Borel measure on M satisfying RCD*(K, N) condition for K ∈ R and N ∈ (1,∞). Assume that
supp (µ) = M. Then, µ andmg are reference measures for (M, dg) and µ ∼ mg, and µ = e−Vmg for some locally
integrable function V .

Proof. The fact that mg is a reference measure follows from Cavalletti-Mondino [8]. We present an argument
as to why µ is also a reference measure. First of all, the measure µ is a Radon measure ([20, Theorem 7.8]).
Since (M, dg , µ) satis�es the RCD*(K, N) condition for K ∈ R, N ∈ (1,∞), µ does not have atoms, that is,
µ({x}) = 0 for any x ∈ M. Assume (M, dg) is isometric to (R≥0, dE) (the other cases can be dealt with in a
similar way). First of all, by Proposition 3.4 in [8], we have µ � mg. Take z ∈ R>0 and �x it.

Step 1. We �nd a family of compact sets Kn ⊂ M, n ∈ N and bi-Lipschitz maps Φn (the so called local
inversion maps), such that,

• µ(M \ ∪n∈NKn) = 0,
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• For every x ∈ Kn, there exists a unique constant speed minimal geodesic γxz : [0, 1] → M from x to z,
which can be extended to [0, 1 + 2/n]→ M as a minimal geodesic,

• The map Φn : Kn → M de�ned by Φn(x) := γxz(1 + 1/n) is bi-Lipschitz onto its image.

Set dz := |z| > 0 and I := {x ∈ R≥0 ; |x| ≤ dz}. De�ne

K̃n :=
{
x ∈ R≥0 ; dz ≤ x ≤

(
1 + n

2
)
dz
}
,

andKn := K̃n∪I. It is clear thatR≥0\∪n∈NKn = ∅. Thismeansmg(R≥0\∪n∈N) = 0, accordingly µ(R≥0\∪n∈N) = 0.
Since the map Φn : Kn := [0, (1 + n/2)dz]→ [dz/2, (1 + 1/n)dz] is bi-Lipschitz, we have required properties.

Step 2. De�ne a map Φ : M → M as

• if x ∈ ∪n∈NKn, Φ(x) := Φnx (x), where nx := min{n ∈ N ; x ∈ Kn};
• if x ∈ M \ ∪n∈NKn, Φ(x) = z.

Take the measure πz := (Id,Φ)]µ. We claim that πz satis�es all the properties required in De�nition 3.11. It is
clear that (p1)]πz = µ and πz(X × X \ H(z)) = 0 by the construction. The last property (p2)]πz � mg is proven
as follows. Let E ∈ R≥0 be a Lebesgue negligible set, that is, mg(E) = 0. Since mg is also Hausdor� measure,
mg(ϕ(E)) = 0 for any bi-Lipschitz map ϕ : M → M (see for instance [4, Proposition 3.1.4]). Therefore, we
obtain

(p2)]πz(E) = πz(p−1
2 (E)) = µ(Φ−1(E)) = µ

(
Φ−1(E) ∩

(⋃
n∈N

Kn

))

= µ
(⋃
n∈N

Φ−1(E) ∩
(
Kn \ ∪1≤j≤n−1Kj

))
≤
∑
n∈N

µ(Φ−1
n (E)) = 0,

Notice that the last equality follows since the sets ,ϕ−1
n (E), are Lebesgue negligible sets and µ � mg. Hence,

µ is a reference measure for (M, dg). The same proof shows that mg is also a reference measure for (M, dg).
Theorem 5.3 in [8] tells us µ ∼ mg. For other one-dimensional spaces, namely, M = R, [0, l], S1(r), similar
arguments work with slight modi�cations. To see that V is locally integrable, see the proof of Lemma 3.13 in
below.

Lemma 3.13. Assume there exists a measurable function V : R → [−∞,∞] such that a metric measure space
(R, dE ,m := e−VH1) satis�es RCD*(K, N) for K ∈ R, N ≥ 1. Then there exists a (K, N)-convex function W :
R → R such that H1({x ∈ R ; V(x) ≠ W(x)}) = 0. In particular, W is continuous and (R, dE , e−WH1) is an
RCD*(K, N) space, which is isomorphic to (R, dE ,m).

Proof. Since m ∼ H1, e−V is locally integrable in R and the set {x ∈ X ; V(x) = {−∞,∞}} isH1-negligible.
First of all, we notice that for a given bounded Borel set Ω ⊂ R, the integral of the negative part of V on Ω is
�nite. Indeed, decompose V into the positive and the negative parts V = (V)+ − (V)−. Then, using, x ≤ ex, we
get ∫

Ω

(V)− dH1 ≤
∫
Ω

e(V)− dH1 ≤
∫
Ω

e−V dH1 = m(Ω) < ∞.

For k >> 0, take Vk = min{V , k}. Vk is integrable w.r.tH1 and any other absolutely continuous measure. Fix
a closed interval [a, b] and denote byH1 even which is restricted on [a, b].

Claim 3.14. For any measure µ ∈ P([a, b]) that is absolutely continuous with respect to H1 and µ ∈
D(Ent(·|H1)), we have ∫

Vk dµ ≤ Ent(µ|e−VH1) − Ent(µ|H1) < ∞.
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Proof. Note that the equivalence H1 ∼ e−VH1 and the integrability of the negative part of V imply µ ∈
D(Ent(·|e−VH1)). Since Vk is integrable, we can write

Ent(µ|e−V
k
H1) = Ent(µ|H1) +

∫
Vk dµ.

Let UN(r) := −Nr1− 1
N de�ned on R≥0. Then, on R>0, UN is negative valued, decreasing and convex. Let

SN(ν|m) := N +
∫

UN(ρ) dm,

then, from Sturm [37] and the factH1([a, b]) < ∞, we know that for any ν ∈ P2([a, b])

Ent(ν|m) = lim
N→∞

SN(ν|m)
(

= sup
N
SN(ν|m)

)
.

Now, for the problem in hand, we have µ = ρ1e−V
k
H1 = ρ2e−VH1 which means ρ1 ≤ ρ2 H1-a.e. (since

Vk ≤ V). We can now compute ∫
Vk dµ = Ent(µ|e−VkH1) − Ent(µ|H1),

and

Ent(µ|e−VkH1) = sup
N
SN(µ|e−VkH1) = sup

N

[
N +

∫
−N
(

dµ
de−VkH1

)1− 1
N

de−V
k
H1
]

= sup
N

N +
∫
−N

 dµ
de−VkH1︸ ︷︷ ︸

ρ1


− 1
N

dµ



≤ sup
N

N +
∫
−N

 dµ
de−VH1︸ ︷︷ ︸

ρ2


− 1
N

dµ


= Ent(µ|e−VH1),

hence we get the desired result.

So now, let µ := 1
b−aH

1 be the normalized Hausdor� measure on [a, b] and notice that we have
∫
Vk dH1

is increasing and bounded above. Hence by monotone convergence theorem and since Ent(H1|e−VH1) −
Ent(H1|H1) = Ent(H1|e−VH1) < ∞, we get∫

V = lim
∫

Vk < ∞.

Take two distinct Lebesgue points x0, x1 ∈ [a, b] of V with respect toH1, that is, to assume

V(xi) = lim
r→0

−
∫

Br(xi)

V(x)H1(dx), i = 1, 2. (3.2)

Note that by the Lebesgue di�erentiation theorem,

H1([a, b] \ {x ∈ R1 ; x satis�es (3.2)}) = 0.

Set µri :=
(
H1(Br(xi))

)−1
H1|Br(xi), where r is chosen small enough so that Br(x0)∩ Br(x1) = ∅. Let Ent(µ|ν) :=∫

X
dµ
dν log

(
dµ
dν

)
dν. Since

Ent(µ|e−VH1) = Ent(µ|H1) +
∫
V dµ,
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and by factoring in the(K, N)-convexity of the Entropy functional, we get

exp
(
− 1
N Ent(µ

r
t |H1)

)
exp

(
− 1
N

∫
V dµrt

)
≥ σ(1−t)

K,N (W2(µr0, µr1)) exp
(
− 1
N Ent(µ

r
0|H1)

)
exp

(
− 1
N

∫
V dµr0

)
+ σ(t)

K,N(W2(µr0, µr1)) exp
(
− 1
N Ent(µ

r
1|H1)

)
exp

(
− 1
N

∫
V dµr1

)
.

(3.3)

It is easy to see that W2(µr0, µr1) = dE(x0, x1). Moreover, the measure µrt can be written as µrt =(
H1(Br(xt))

)−1
H1|Br(xt), where xt := (1 − t)x0 + tx1. Thus, we compute

Ent(µrt |H1) = −
∫

Br(xt)

log 1
H1(Br(xt))

H1(dx) = log 1
H1(Br(xt))

= Ent(µr0|H1) = Ent(µr1|H1).

Taking the limsup of (3.3) as r → 0, one gets

exp
(
− 1
N lim inf

r→0

∫
V dµrt

)
≥ σ(1−t)

K,N (dE(x0, x1)) exp
(
− 1
N V(x0)

)
+ σ(t)

K,N(dE(x0, x1)) exp
(
− 1
N V(x1)

)
.

In particular,

exp
(
− 1
N V(xt)

)
≥ σ(1−t)

K,N (dE(x0, x1)) exp
(
− 1
N V(x0)

)
+ σ(t)

K,N(dE(x0, x1)) exp
(
− 1
N V(x1)

)
. (3.4)

holds if xt is a Lebesgue point of V. Consider the functionW which is de�ned by

W(x) :=
{
V(x) if x is a Lebesgue point of V,
inf{yi}

{
lim infyi→x V(yi)

}
otherwise,

where, the in�mum in the second line, is taken over all sequences {yi} approaching to x. By the de�nition of
W and by (3.4), we obtain

exp
(
− 1
NW(xt)

)
≥ σ(1−t)

K,N (dE(x0, x1)) exp
(
− 1
NW(x0)

)
+ σ(t)

K,N(dE(x0, x1)) exp
(
− 1
NW(x1)

)
.

AlsoH1({V ≠ W}) = 0 holds by the Lebesgue di�erentiation theorem. By 19, Lemma 2.12],W is a continuous
function. The continuity ofW implies a lower boundedness ofW in any closed bounded convex set in [a, b].
This local boundedness togetherwith 19, Proposition 3.3] will imply that the RCD*(K, N) condition is satis�ed
by ([a, b], dE , e−WH1). On letting −a, b →∞, we have

H1 (R \ {x ∈ R ; x satis�es (3.2)}
)

= 0.

The same argument above leads to the consequence.

Proof of Theorem 1.1. It is clear that (2) implies (3). Also (4) immediately implies (1), (2), and (3). According
to the fact m(X \R) = 0, we know (3)⇒ (1). Finally Theorem 3.7 says that (1) implies (2) and (4).

Using Proposition 3.12 and Lemma 3.13, we know that (X, d,m) is isomorphic to (X, d, e−fH1), where
f : X → R is a (K, N)-convex function provided that (X, d) is isometric to (R, dE). However, a similar argument
works for S1, R>0, and an open interval. Hence, each (X, d,m) is written in the form (X, d, e−fH1), where
f : X → R ∪ {±∞} is (K, N)-convex and continuous on the interior of X.

Proof of Corollary 1.2. By Lemma 3.3, Rj = ∅ for any j ≥ 2. Thus applying Theorem 1.1 let us obtain the
consequence.
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4 Spaces with Ricci curvature ≥ K > 0, never collapse to circles
In 16, Section 5], Colding proves that manifolds with positive Ricci curvature never collapse to a unit sphere
of lower dimension.

Theorem 4.1 (Colding [16]). Let Mn
i be n-dimensional Riemannian manifolds with positive Ricci curvature

RicMi ≥ (n − 1). Assume that Mn
i converges to a unit sphere Sm. Then n = m.

In this section, we present a totally di�erent proof of this result when m = 1 by taking advantage of the
convexity of the potential function V. Moreover, our presented theorem is a bit stronger (see Remark 4.3).

Theorem 4.2. Let (X, d,m) be an RCD*(K, N) space for K > 0, N ∈ (1,∞). Then (X, d) is not isometric to a
circle with its standard metric (S1(r), d) for any r > 0.

Proof. Suppose (X, d,m) is isometric to (S1(r), d,m). For simplicity, we omit r > 0. By Theorem 1.1, we are
able to write m = e−VvolS1 for a (K, N)-convex function V. First to see where the contradiction comes from,
we assume V ∈ C2(S1). Then V satis�es the di�erential inequality V ′′ ≥ K − (V ′)2/N (see the equation (1.2) in
[19]). Since K > 0, we have V ′′ > 0 at critical points. On the other hand, V has a maximal point x0 ∈ S1 since
V is continuous and S1 is compact. Therefore V ′′(x0) ≤ 0. This contradicts.

Now for general case, we know that V is continuous (and in fact Lipschitz). Suppose x̄ is a maximal point
for V. Take x0, x1 with d(x0, x̄) = d(x1, x̄) = d(x0, x1)/2 and with d(x0, x1) is su�ciently small. We may also
assume V(x0) ≤ V(x1). By the de�nition of (K, N)-convexity,

exp
(
− 1
N V(x̄)

)
≥

sin
(
d(x0 ,x1)

2

√
K
N

)
sin
(
d(x0, x1)

√
K
N

) exp
(
− 1
N V(x0)

)
+

sin
(
d(x0 ,x1)

2

√
K
N

)
sin
(
d(x0, x1)

√
K
N

) exp
(
− 1
N V(x1)

)

= 1

2 cos
(
d(x0 ,x1)

2

√
K
N

) (exp
(
− 1
N V(x0)

)
+ exp

(
− 1
N V(x1)

))

≥ 1

cos
(
d(x0 ,x1)

2

√
K
N

) exp
(
− 1
N V(x1)

)

≥ 1

cos
(
d(x0 ,x1)

2

√
K
N

) exp
(
− 1
N V(x̄)

)
.

Since 0 < d(x0, x1) ≤ π
√
N/K,

cos
(
d(x0, x1)

2

√
K
N

)
< 1.

which is a contradiction.

Remark 4.3. In Colding [16], sequences of n-dimensional closed Riemannian manifolds with Ric ≥ n − 1
are considered. Our Theorem 4.2 also applies to weighted Riemannian manifolds with boundary as long as
RCD*(K, N) condition for K > 0 and N ∈ (1,∞) is satis�ed.
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5 Further information on the measures

5.1 Bishop-Gromov type inequalities

In this section, we prove useful Bishop-Gromov type inequalities for RCD*(K, N) spaces.

De�nition 5.1. Let (X, d,m) be a metric measure space. We de�ne a boundary measure ( known as co-
dimension 1 measure), m−1, as follows. Let δ > 0 be a su�ciently small number. For a Borel set A ⊂ X,
de�ne

(m−1)δ(A) := inf
{∑
i∈I

r−1
i m(Bri (xi)) ; ri ≤ δ,

⋃
i∈I
Bri (xi) ⊃ A, I: countable

}
,

and,
m−1(A) := lim

δ→0
(m−1)δ(A).

Let SK,N(t) for N > 1, K ∈ R be the following:

SK,N(t) :=


√

N−1
K sin(t

√
K
N−1 ) if K > 0,

t if K = 0,√
N−1
−K sinh(t

√
−K
N−1 ) if K < 0.

Bishop-Gromov type inequalities for boundary measures hold on Ricci limit spaces (see Honda [26]). The
same is also true for RCD*(K, N) spaces.

Theorem 5.2. Let (X, d,m) be ametricmeasure space satisfying RCD*(K, N) condition andm−1, the boundary
measure. For any point x0 ∈ X and any t > 0, we have

m−1(∂Bt(x0)) ≤ 2 · 5N−1 · m(Bt(x0)) SK,N(t)N−1∫ t
0 SK,N(r)N−1 dr

. (5.1)

Proof. Let F(r) :=
∫ r

0 SK,N(s)N−1 ds and �x x0 ∈ X, t > 0. Let δ > 0 be a small positive number satisfying
0 < δ < t/200. It is trivial that ⋃

x∈∂Bt(x0)
Bδ(x) ⊃ ∂Bt(x0).

Since ∂Bt(x0) is compact, we can apply a covering lemma argument (as in 4, Theorem 2.2.3.]) to get a �nite
family of points {xi}i∈I ⊂ ∂Bt(x0) such that {Bδ(xi)}i∈I are mutually disjoint and ∪iB5δ(xi) ⊃ ∂Bt(x0) holds.
It is clear that Bδ(xi) ⊂ Bt+δ(x0) \ Bt−δ(x0). By the Bishop-Gromov inequality, we obtain

m(Bt+δ(x0)) ≤ F(t + δ)
F(t − δ)m(Bt−δ(x0)).

Since F is smooth,

1 − F(t − δ)
F(t + δ) = 2δ · F

′(t − δ)
F(t + δ) + o(δ), (5.2)

holds by the Taylor expansion at t − δ. Then from (5.2), we compute

m(Bt+δ(x0) \ Bt−δ(x0)) = m(Bt+δ(x0)) − m(Bt−δ(x0)) ≤ m(Bt+δ(x0)) − F(t − δ)
F(t + δ)m(Bt+δ(x0))

= 2δ · F
′(t − δ)
F(t + δ) m(Bt+δ(x0)) + o(δ).
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Therefore,

(m−1)δ(∂Bt(x0)) ≤
∑
i∈I

(5δ)−1m(B5δ(xi))

≤ (5δ)−1 F(5δ)
F(δ)

∑
i∈I

m(Bδ(xi))

= (5δ)−1 F(5δ)
F(δ) m

(⋃
i∈I
Bδ(xi)

)

≤ (5δ)−1 F(5δ)
F(δ) m(Bt+δ(x0) \ Bt−δ(x0)) (5.3)

≤ 2 · 5N−1 · F
′(t − δ)
F(t + δ) m(Bt+δ(x0)) + o(δ)

δ . (5.4)

Letting δ → 0 in (5.4), we get (5.1).

Remark 5.3. Suppose ∂Bt(x0) is inside a geodesically convex subset, X′ with diam(X′) ≤ D. Then, In
the virtue of the Lévy-Gromov isoperimetric inequality for RCD*(K, N) spaces that is proven in Cavalletti-
Mondino [9], one gets

m+ (Bt(x0)
)
≥ IK,N,D

(
m
(
Bt(x0)

))
. (5.5)

where, IK,N,D(·) is the Milman’s model isoperimetric pro�le (see Cavalletti-Mondino [9] and Milman [31] for
the precise de�nitions). Our Theorem 5.2, in contrast to the Lévy-Gromov isoperimetric inequality, provides
an upper bound for the surface measure m−1

(
∂Bt(x0)

)
in terms of m

(
Bt(x0)

)
. Notice that the two surface

measures, m+ and m−1 are a priori di�erent but comparable in one direction on spheres. Indeed, by (5.3), we
have

m−1(∂Bt(x0)) ≤ 5N−1 lim
δ→0

m(Bt+δ(x0) \ Bt−δ(x0))
δ .

Since

m(Bt+δ \ Bt−δ) = m(Bt+δ) − m(Bt)

≤ m(Bt+δ) − F(t − δ)
F(t) m(Bt)

= m(Bt+δ \ Bt) + F(t) − F(t − δ)
F(t) m(Bt),

we obtain

m−1(∂Bt(x0)) ≤ 5N−1
(
m+(Bt(x0)) + F′(t)m(Bt(x0))

F(t)

)
.

A direct consequence of the inequality (5.1) is the following.

Corollary 5.4 (�niteness of boundary measures). For an RCD*(K, N) space (X, d,m), the mass of the bound-
ary of a ball, measured by the boundary measure m−1, is always �nite.

Corollary 5.5 (Bishop-Gromov type inequality). Let (X, d,m) be an RCD*(K, N) space with suppm = X. As-
sume that X is not the single point space. Fix a point y ∈ X. Then, for any R > 0 and each x ∈ BR(y), there exists
a constant C = C(R, y) such that,

m(Bs(x)) ≤ Cs, (5.6)

holds for any s ∈ (0, 1]. Moreover,

m−1(∂Bs(x)) ≤ C. (5.7)
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Proof. Once we prove (5.6), (5.7) will directly follow by using Theorem 5.2. Fix y ∈ X and R > 0. Take x0 ∈
BR(y) with d(x0, y) = t. Choose 0 < δ < t/200 such that Bδ(x0) ⊂ Bt+δ(y) \ Bt−δ(y). Since ∂Bt(y) \ B3δ(x0)
is compact, using the same covering argument as in the proof of Theorem 5.2, we can �nd a �nite family of
points {xi}i∈I ⊂ ∂Bt(y)\B3δ(x0) such that {Bδ(xi)}i∈I aremutually disjoint and ∂Bt(y)\B3δ(x0) ⊂ ∪i∈IB5δ(xi).
Note that, by the construction, Bδ(x0) ∩ Bδ(xi) = ∅ for any i ∈ I and

(
∪i∈IB5δ(xi)

)
∪ B5δ(x0) ⊃ ∂Bt(y). Thus,

repeating the same calculation as in the proof of Theorem 5.2, we write

m(B5δ(x0))
5δ ≤ m(B5δ(x0))

5δ +
∑
i∈I

(5δ)−1m(B5δ(xi))

≤ 2 · 5N−1 · F
′(t − δ)
F(t + δ) m(Bt+δ(y)) + o(δ)

δ .

Upon letting δ → 0, we obtain

lim sup
δ→0

m(B5δ(x0))
5δ ≤ 2 · 5N−1 F′(t)

F(t) m(Bt(y)). (5.8)

Notice that, these calculations actually imply that the small scale volume growth at any point is at most
linear so we can write m(Bt(y)) ≤ Ct for some C > 0.

Also notice that

lim
t→0

tF′(t)
F(t) ≤ C(K, N) < ∞.

Therefore, the RHS of (5.8) is bounded by

C(K, N, R) := 2 · 5N−1 sup
t∈(0,R]

tF′(t)/F(t) < ∞.

Hence,

m(Bδ(x0)) ≤ C(R, y)δ,

holds for small δ > 0. The inequality (5.2) and the proof of Theorem 5.2 give the conclusion.

Corollary 5.6. Let (X, d,m) be an RCD*(K, N) space. Let (W , dW ,mW , ω) be a pointed proper geodesic metric
measure space. Assume that (

Rk ×W , dE × dW ,Lk × mW , (0E , ω)
)
,

is a tangent cone at x ∈ X. Then,

lim sup
δ→0

mW (Bδ(w))
δ ≤ C(d, R) < ∞.

Proof. It is implicit in the splitting theoremapplied to (Rk×W , dE×dW ,Lk×mW , (0E , w)), that (W , dW ,mW , w)
is an RCD*(0, N − k) space. The desired conclusion, then, follows from Corollary 5.5.

5.2 Higher dimensional case

Proposition 5.7. Let x be a point inWE1. Then

lim inf
r→0

m
(
Br(x)

)
r = 0. (5.9)

Proof. By the de�nition, there exist a sequence of positive numbers {ri} tending to 0 as i → ∞ and a proper
geodesic space (W , dW ,mW ) such that

(X, dri ,mx
ri , x)→

(
R ×W , dE × dW ,L1 × mW , (0E , ω)

)
,
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in the measured Gromov-Hausdor� sense. In the virtue of Corollary 5.6, mW (Br(w)) ≤ Cr. Since Br(0E , w) ⊂
B√2r(0E) × B√2r(w), we obtain

L1 × mW (Br(0E , w)) ≤ L1(B√2r(0E))mW (B√2r(w)) ≤ Cr2.

Note that Corollary 5.5 implies m(Br(x)) ≤ Cr. Therefore for given arbitrary ϵ > 0,

lim inf
r→0

m(Br(x))
r ≤ lim

i→∞

m
(
Bϵri (x)

)
ϵri

= lim
i→∞

mx
ri

(
Bdriϵ (x)

)
ϵri

·
∫

Bri (x)

1 − 1
ri
d(x, ·) dm

≤ C lim
i→∞

mx
ri

(
Bdriϵ (x)

)
ϵ

= C
L1 × mW

(
Bϵ(0E , w)

)
ϵ

≤ C′ϵ,

holds. The arbitrariness of ϵ immediately implies (5.9).

Consider a setM1 de�ned by

M1 :=
{
x ∈ X ; (5.9) holds at x

}
.

Lemma 5.8. For given r > 0, the function x 7→ m(Br(x))/r is locally Lipschitz and in particular, locally uniformly
continuous for r > 0.

Proof. A similar argument as in the proof of Theorem 5.2 can be applied here too ( also see Lemma 3.1 in [29]).
For the reader’s convenience, we give a proof. The notations below are as in the proof of Theorem 5.2. Fix
a point x ∈ X. Take another point y ∈ X. For simplicity, set d := d(x, y). Take a midpoint z ∈ X, that is,
d(x, z) = d(z, y) = d(x, y)/2. We have

m(Br(x)) ≤ m(Br+d/2(z)) ≤ F(r + d/2)
F(r − d/2)m(Br−d/2(z)).

Therefore,

m
(
Br(x) \ Br(y)

)
= m(Br(x)) − m(Br(x) ∩ Br(y))
≤ m(Br(x)) − m(Br−d/2(z))

≤
{

1 − F(r − d/2)
F(r + d/2)

}
m(Br(x))

=
{
F′(r − d/2)
F(r + d/2) d + o(d)

}
m(Br(x)),

for small d. Interchanging the role of x and y, gives∣∣∣∣m(Br(x))
r − m(Br(y))

r

∣∣∣∣ ≤ 1
r m(Br(x)∆Br(y))

≤ 1
r

{
F′(r − d/2)
F(r + d/2) d + o(d)

}(
m(Br(x)) + m(Br(y))

)
≤ C
{
F′(r − d/2)
F(r + d/2) d + o(d)

}
. (5.10)

The right-hand side in (5.10) is independent of the choice of x, so using Corollary 5.4, we have the conclusion.
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Remark 5.9. In (5.10), we have F′(r)/F(r)→∞ as r → 0 and therefore, it does not tell us anything about the
modulus of continuity of m(Br(x))

r . If we, a priori, assume the uniform continuity for r ≥ 0, we can prove that

Mk :=
{
x : lim inf

r→0

m
(
Br(x)

)
rk

= 0
}
,

is closed.

Proposition 5.10. Suppose m(Br(x))
r is uniformly continuous for r ≥ 0, thenM1 is a closed set.

Proof. Suppose not. Let x ∈M1\M1. Hence, there exists a constant C > 0 such that C ≤ lim infr→0 m(Br(x))/r.
Take a sequence yi ∈ M1 converging to x. For su�ciently small r > 0, we have C/2 ≤ m(Br(x))/r. By Lemma
5.8,

|m(Br(x)) − m(Br(yi))| ≤ Cr/4 for large i.

Therefore, we obtain

C
2 ≤

m(Br(x))
r ≤

m
(
Br(yi)

)
r + C

4 ,

for any small r. This contradicts yi ∈M1.

Corollary 5.11. Let (X, d,m) be an RCD*(K, N) space for K ∈ R, N ∈ (1,∞). Assume that there exists a point
x ∈ X such that

lim inf
r→0

m(Br(x))
r > 0.

Then (X, d,m) is isomorphic to one of the metric measure spaces given in Theorem 1.1.

Proof. SinceM1 is closed, X \M1 is open. Therefore a small open neighbourhood, U, of x is in X \M1. Since
m(U) > 0, m(U ∩ R) > 0. However Proposition 5.7 implies U ⊂ X \WE1 ⊂ X \ ∪j≥2Rj. Accordingly, R1 ≠ ∅.
Theorem 1.1 implies the consequence.

We can generalize the statement of above propositions in the following way. De�ne

Mk :=
{
x ∈ X ; lim inf

r→0
m(Br(x))

rk
= 0
}
.

The closeness ofMk can be proven just in the same way as in Proposition 5.10. Then we conjecture:

Conjecture 5.12. Suppose m(Br(x))
rk is uniformly continuous for r ≥ 0, then

WEk ⊂Mk . (5.11)

Remark 5.13. The Conjecture 5.12 is deeply related to a relation between given measure m and Hausdor�
measure on regular sets.We speculate that, (5.11) being true, would imply thatm restricted toRk is an Ahlfors
k-regular measure. (also see the related work by David [18]).

A Explicit details of the proof of Claim 3.8
Here, we will show that the K−convexity of the entropy fails under the branching phenomenon (even when
the branching time is not the same but rather within a short time interval) as in Claim 3.8. One should keep
the tripod example in mind while reading these computations.

We will be using the same notations as in the Claim 3.8 and almost the same calculations as in [36].
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As we observed in Claim 3.8, one obtains two mutually singular measures πu and πd (in the tripod space
analogy, the superscripts d and u mean up and down referring to the plans supported on either the upper or
lower branches).

The trick is to write the K− convexity of Entropy along the measure curve ρdt +ρut
2β at "�xed" times, t = b (a

very small positive number less than a), t = a and t = a′ = a + ϵ and along the measure curves ρdt
β and ρut

β at
"�xed" times t = a, t = a′ = a + ϵ and t = 1. Recall that all the branching is happening within the tiny time
interval (a, a′) and hence, these two measure curves coincide for times t ≤ a. The computations are similar
to Step 7 in Rajala-Sturm [36]: K− convexity of Entropy along the measure curve ρdt +ρut

2β implies that at times,
t = b , t = a and t = a′ = a + ϵ, one has

Ent
(

(eb)]πda
β |m

)
=
∫
ρda
β log ρ

d
a
β dm

≤ ϵ
ϵ + a − b

∫ ρdb
β log ρ

d
b
β dm + a − b

a + ϵ − b

∫
ρda+ϵ + ρua+ϵ

2β log ρ
d
a+ϵ + ρua+ϵ

2β dm

+ |K|2
ϵ(a − b)

(a + ϵ − b)2W
2
2

(
(eb)]

(
πd + πu

2β

)
, (ea+ϵ)]

(
πd + πu

2β

))
=: II.

Since supp ρua+ϵ and supp ρda+ϵ are mutually disjoint, we can proceed as∫
ρua+ϵ + ρda+ϵ

2β log ρ
u
a+ϵ + ρda+ϵ

2β dm = 1
2

∫
supp µua+ϵ

ρua+ϵ
β log ρ

u
a+ϵ
2β dm + 1

2

∫
supp µda+ϵ

ρda+ϵ
β log ρ

d
a+ϵ
2β dm

= 1
2

∫
supp µua+ϵ

ρua+ϵ
β log ρ

u
a+ϵ
β dm + 1

2

∫
supp µda+ϵ

ρda+ϵ
β log ρ

d
a+ϵ
β dm − log 2

= 1
2

∫
ρua+ϵ
β log ρ

u
a+ϵ
β dm + 1

2

∫
ρda+ϵ
β log ρ

d
a+ϵ
β dm − log 2.

Both supp (e0)*((πu + πd)/2β) and supp (e1)*((πu + πd)/2β) are contained in Bη/n2 (x). For large n, every
geodesic connecting a point in the former and a point in the latter is also contained in Bη(x). This means the
Wasserstein distance between these measures is at most η. Thus,

W2
2

(
(eb)*

(
πu + πd

2β

)
, (ea+ϵ)*

(
πu + πd

2β

))
≤ (a + ϵ − b)2W2

2

(
(e0)*

(
πu + πd

2β

)
, (e1)*

(
πu + πd

2β

))
≤ (a + ϵ − b)2η2.

Now, using the density estimate
d (eb)] πd

dm ≤ C,

we can continue as follows

II ≤ ϵ
a + ϵ − b log Cβ + |K|2 ϵ(a − b)η2 − a − b

a + ϵ − b log 2

+ a − b
2(a + ϵ − b)

(∫
ρda+ϵ
β log ρ

d
a+ϵ
β dm +

∫
ρua+ϵ
β log ρ

u
a+ϵ
β dm

)
≤ ϵ
a + ϵ − b log Cβ + |K|2 ϵ(a − b)η2 − a − b

a + ϵ − b log 2

+ a − b
2(a + ϵ − b)

(
ϵ

1 − a

∫
ρd1
β log ρ

d
1
β dm + 1 − a − ϵ

1 − a

∫
ρda
β log ρ

d
a
β dm + |K|2 ϵ(1 − a − ϵ)η2

)
+ a − b

2(a + ϵ − b)

(
ϵ

1 − a

∫
ρu1
β log ρ

u
1
β dm + 1 − a − ϵ

1 − a

∫
ρua
β log ρ

u
a
β dm + |K|2 ϵ(1 − a − ϵ)η2

)
.

The above is equivalent to∫
ρda
β log ρ

d
a
β dm ≤ ϵ

1 − a log Cβ −
(1 − a)(a − b)
ϵ(1 − b) log 2 + (a − b)(1 − a) |K|2 η2. (A.1)
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Taking into account (A.1), We can approximate the entropy of πu/β at time a + ϵ by∫
ρua+ϵ
β log ρ

u
a+ϵ
β dm ≤ log Cβ − (1 − a − ϵ) log 2

(
a − ϵ
ϵ(1 − b) −

a + ϵ − b
3

)
. (A.2)

On combining the upper estimate (A.2) and the lower estimate (3.1), we obtain

ϵ
(

log ϵ
10m(B(x, η/2)) − log C

)
≤ −(1 − a − ϵ) log 2

(
a − b
1 − b −

a(a + ϵ − b)
3

)
. (A.3)

The right-hand side of (A.3) is strictly negative (think of b ↘ 0) while the left-hand side approaches to 0 as ϵ
goes to 0 (recall that ϵ → 0 as n →∞). This is a contradiction.

It is easier (computation-wise) to get the contradiction using the Rényi entropy instead of the Shannon
entropy as we demonstrate in below. For simplicity we assume β = 1 and K ≥ 0. For general K, one would
need to also incorporate torsion coe�cients in the K− convexity estimates and the contradiction will follow
by letting ϵ → 0 and then, N → ∞ (notice that for any K, the torsion coe�cients, σN(t) converge to t as
N →∞). These computations are similar to those carried out in Rajala [35].

∫ (
ρda
)1− 1

N dm ≥ ϵ
ϵ + a − b

∫ (
ρdb
)1− 1

N dm + 2 1
N −1 · a − b

a + ϵ − b

∫ (
ρda+ϵ + ρua+ϵ

)1− 1
N dm

− |K|2
ϵ(a − b)

(a + ϵ − b)2W
2
2

(
(eb)]

(
πd + πu

2

)
, (ea+ϵ)]

(
πd + πu

2

))
> − |K|2 ϵ(a − b)η2

+ 2 1
N −1 · a − b

(a + ϵ − b)

(
ϵ

1 − a

∫ (
ρd1
)1− 1

N dm + 1 − a − ϵ
1 − a

∫ (
ρda
)1− 1

N dm − |K|2 ϵ(1 − a − ϵ)η2
)

+ 2 1
N −1 · a − b

(a + ϵ − b)

(
ϵ

1 − a

∫ (
ρu1
)1− 1

N dm + 1 − a − ϵ
1 − a

∫ (
ρua
)1− 1

N dm − |K|2 ϵ(1 − a − ϵ)η2
)

= 2 1
N

(
a − b

a + ϵ − b

)(
1 − a − ϵ

1 − a

)∫ (
ρda
)1− 1

N dm − 2 1
N

(
a − b

a + ϵ − b

)
|K|
2 ϵ(1 − a − ϵ)η2

Now, on letting ϵ → 0, we get ∫ (
ρda
)1− 1

N dm ≥ 2 1
N

∫ (
ρda
)1− 1

N dm,

which is an obvious contradiction for any N.
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