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Abstract In this article, we consider the Angenent–Caputo–Knopf’s Ricci flow through
neckpinch singularities. We will explain how one can see the A–C–K’s Ricci flow through
a neckpinch singularity as a flow of integral current spaces. We then prove the continuity of
this weak flow with respect to the Sormani–Wenger intrinsic flat distance.
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1 Introduction

There are many parallels between Hamilton’s Ricci flow and mean curvature flow. While
Ricci flow with surgery was proposed by Hamilton (see [8]) and modified and developed
by Perelman (see [12] and [11]), a canonical Ricci flow through singularities which could
be a gateway to a notion of Weak Ricci flow is only being explored and defined recently
(see [1]). On the contrast, weak MCF was developed by Brakke by applying Geometric
Measure Theory and viewing manifolds as varifolds. Recently White proved that Brakke
flow is continuous with respect to the Flat distance, when the varifolds are viewed as integral
current spaces (see [14]). For the Ricci flow—in contrast with MCF—there is no a priori
ambient metric space so one needs to work with intrinsic notions of convergence. The theory
of intrinsic flat distance has been recently developed by Sormani–Wenger in [13] which
provides a framework for our work. Here, we prove that the examples of Ricci flow across
neckpinch singularities constructed by Angenent–Caputo–Knopf is continuous with respect
to Sormani–Wenger intrinsic flat distance when the Riemannian manifolds flowing through
the neckpinch singularity and the resulting singular spaces are viewed as integral current
spaces.
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Consider the Ricci flow on the Sn+1 starting from a rotationally symmetric metric g0.
Angenent–Knopf in [4] showed that if g0 is pinched enough, then the flow will develop
a neckpinch singularity (see Definition 3.3) in finite time T and they computed the pre-
cise asymptotics of the profile of the solution near the singular hypersurface and as
t ↗ T .

Later, in [1], Angenent–Caputo–Knopf proved that one can define a smooth forward evo-
lution of Ricci flow through the neckpinch singularity. They achieved that basically by taking
a limit of Ricci flowswith surgery and hence showed that Perelman’s conjecture that a canon-
ical Ricci flow with surgery exists is actually true in the case of the sphere neckpinch. Since
the smooth forward evolution performs a surgery at the singular time T = 0 and on scale 0,
therefore at all positive times the flow will consists of two disjoint smooth Ricci flows on a
pair of manifolds.

In order to define a weak Ricci flow, we must view the pair of manifolds M1 and M2
as a single integral current space. Recall that an integral current space (X, d, T ) defined
in [13] is a metric space (X, d) endowed with an integral current structure T using the
Ambrosio–Kirchheim notion of an integral current [2] so that X is the set of positive
density of T . Following a suggestion of Knopf, we endow M = M1 " M2 with a met-
ric restricted from a metric space obtained by gluing the manifolds at either end of a
thread of length L(t). The resulting integral current space does not include the thread (nor
the point of singularity at time t = T ) because every point in an integral current space
has positive density. We will consider this approach and prove the following continuity
result:

Theorem 1.1 Let (X (t), D(t), T (t)) be a smooth rotationally symmetric Ricci flow on Sn+1

for , t ∈ (−ϵ, 0) developing an equatorial neckpinch singularity at T = 0with finite diameter
and continuing for t ∈ (0, ϵ) as a disjoint pair of manifolds joined by a thread of continuous
length L(t) > 0 with L(0) = 0 undergoing Ricci flow as in [1]. Then, X (t) is continuous in
time with respect to the SWIF distance.

Notice that the assumption T = 0 in Theorem 1.1 is only for the sake of simplicity . The
reflection symmetry in Theorem 1.1 is there to guarantee the finite diameter and equatorial
pinching at the singular time. In general, we get the following corollary:

Corollary 1.2 Let (X (t), D(t), T (t)) be a smooth rotationally and reflection symmetric
Ricci flow on Sn+1 for t ∈ (−ϵ, 0) developing a neckpinch singularity at T = 0 and contin-
uing for t ∈ (0, ϵ) as a disjoint pair of manifolds joined by a thread of length L(t) > 0 with
L(0) = 0 undergoing Ricci flow as in [1]. Then, this is continuous in time with respect to the
SWIF distance.

To prove Theorem 1.1, in Theorem 2.8, we adapt a result from the previous work of the
author with Sormani [10] in order to estimate the SWIF distance between our spaces. In
Lemmas 4.2, 4.5 and 4.7, we prove the continuity of the flow prior, at and post the singular
time respectively.

The paper is organized as follows: in Sect. 2, we give a brief review of the notion of SWIF
distance and provide some results from the previous work of the Author with Sormani [10]
which aid us in estimating the SWIF distance. Section 3 provides a review of some of the
basic fact about Ricci flow as well as a review of the recent work on the Ricci flow neckpinch
and smooth forward evolution [1,3,4] which is key for our work in this paper. Section 4 is
devoted to proving Theorem 1.1 which is the main result of this paper.

123



Geom Dedicata (2015) 179:69–89 71

2 Review of estimates on SWIF distance

The notion of an integral current space and the intrinsic flat distance were first introduced
by Sormani–Wenger in [13], using Ambrosio–Kirchheim’s notion of an integral current on
a metric space [2].

Recall that if Z is a metric space and Ti ∈ Im(Z) , i = 1, 2 are two m-integral currents on
Z (see [2] for the definition of current structure for metric measure spaces), the flat distance
between Ti ’s is defined as follows:

dZ
F (T1, T2) := inf {M(U )+M(V ) : T1 − T2 = U + ∂V } . (1)

Now let
(Xi , di , Ti ) i = 1, 2, (2)

be two m-integral current spaces. Their Sormani–Wenger intrinsic flat distance is defined as

dF (X1, X2) := inf dZ
F (ϕ1#T1,ϕ2#T2) (3)

where the infimum is taken over all metric spaces Z and distance preserving embeddings
ϕi : X̄i → Z . Note that X̄i are metric completions of Xi and ϕ#T is the push forward of T .

We will briefly review some of these notions in Sect. 2.1.

2.1 Integral current spaces and metric completion

An integral current space (X, d, T ) is a metric space (X, d) equipped with a current structure
T such that set(T ) = X (see Definition 2.1).

An oriented Riemannian manifold (Mm, g) of finite volume can naturally be viewed as
an m—integral current space by specifying the current structure T to be the integration of
differential m—forms against M

T (ω) =
∫

Mm
ω. (4)

More generally, an m—integral current structure T of the current space (X, d, T ) is an
integral current T ∈ Im(X̄) as is defined by Ambrosio–Kirchheims in [2]. The current
structure T provides an orientation and a measure on the space which is called the mass
measure of T and is denoted by ∥T ∥. The mass measure of an oriented Riemannian manifold
Mm considered as an m—integral current space is just the Lebesgue measure on Mm as can
be seen from 4.

The settled completion set(X) of an integral current space is the set of points in the metric
completion X̄ with the positive lower density for the mass measure ∥T ∥ (see Definition 2.1).

Definition 2.1 (Sormani and Wenger [13]) Let (X, d, µ) be a metric measure space. The
settled completion X ′ of X is the set of all points p in the metric completion X̄ of X with
positive lower density

%∗(p) = lim inf
r→0

µ (B(p, r))
rm

> 0. (5)

2.2 Estimate on SWIF

Here, we will present results regarding the estimates on the intrinsic flat distance between
manifolds which are Lipschitz close or have precompact regions with that property. There
are estimates on the SWIF distance given in [13] which employ techniques from geometric
measure theory. The results presented in this section uses the simple idea of hemispherical
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embedding which is easier to understand especially for the reader without a background in
GMT.

To estimate the intrinsic flat distance between two oriented Riemannian manifolds, one
needs to finddistance preserving embeddings,ϕi : Mm

i → Z , into a commoncompletemetric
space, Z . Since in the definition of the intrinsic flat distance using a Stoke’s type formula,
one needs to find a filling submanifold, Bm+1 ⊂ Z , and an excess boundary submanifold,
Am ⊂ Z , such that ∫

ϕ1(M1)
ω −

∫

ϕ2(M2)
ω =

∫

B
dω +

∫

A
ω, (6)

then, the intrinsic flat distance is bounded above by

dF (Mm
1 ,Mm

2 ) ≤ Volm(Am)+ Volm+1(Bm+1). (7)

Generally, the filling manifold and excess boundary can have corners or more than one
connected component. Below we present results regarding the construction of these mani-
folds.

Definition 2.2 (Lakzian and Sormani [10]) Let D > 0 and M,M ′ are geodesic metric
spaces. We say that ϕ : M → M ′ is a D-geodesic embedding if for any smooth minimal
geodesic, γ : [0, 1] → M , of length ≤ D we have

dM ′(ϕ(γ (0)),ϕ(γ (1))) = L(γ ). (8)

Proposition 2.3 (Lakzian and Sormani [10]) Given a manifold M with Riemannian metrics
g1 and g2 and D1, D2, t1, t2 > 0. Let M ′ = M × [t1, t2] and let ϕi : Mi → M ′ be defined
by ϕi (p) = (p, ti ). If a metric g′ on M ′ satisfies

g′ ≥ dt2 + cos2((t − ti )π/Di )gi for |t − ti | < Di/2 (9)

and
g′ = dt2 + gi onM × {ti } ⊂ M ′ (10)

then any geodesic, γ : [0, 1] → Mi , of length ≤ Di satisfies (8). If, the diameter is bounded,
diamgi (M) ≤ Di , then ϕi is a distance preserving embedding.

Furthermore, for q1, q2 ∈ M, we have

dM ′(ϕ1(q1),ϕ2(q2)) ≥ dMi (q1, q2). (11)

Proof See [10, Proposition 4.2]. ⊓"
Proposition 2.4 (Lakzian and Sormani [10]) Suppose M1 = (M, g1) and M2 = (M, g2) are
diffeomorphic oriented precompact Riemannian manifolds and suppose there exists ϵ > 0
such that

g1(V, V ) < (1+ ϵ)2g2(V, V ) and g2(V, V ) < (1+ ϵ)2g1(V, V ) ∀ V ∈ T M. (12)

Then for any

a1 >
arccos(1+ ϵ)−1

π
diam(M2) (13)

and

a2 >
arccos(1+ ϵ)−1

π
diam(M1), (14)

there is a pair of distance preserving embeddings ϕi : Mi → M ′ = M̄ × [t1, t2] with a
metric as in Proposition 2.3 where t2 − t1 ≥ max {a1, a2}.
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In fact, the metric g′ on M ′ can be chosen so that

g′(V, V ) ≤ dt2(V, V )+ g1(V, V )+ g2(V, V ) ∀ V ∈ T M ′. (15)

Thus the Gromov–Hausdorff distance between the metric completions is bounded,

dGH (M̄1, M̄2) ≤ a := max {a1, a2} , (16)

and the intrinsic flat distance between the settled completions are bounded,

dF (M ′
1,M

′
2) ≤ a (V1 + V2 + A1 + A2) , (17)

Proof See [10, Lemma 4.5]. ⊓"

Theorem 2.5 (Lakzian and Sormani [10]) Suppose M1 = (M, g1) and M2 = (M, g2) are
oriented precompact Riemannian manifolds with diffeomorphic subregions Ui ⊂ Mi and
diffeomorphisms ψi : U → Ui such that

ψ∗
1 g1(V, V ) < (1+ ϵ)2ψ∗

2 g2(V, V ) ∀ V ∈ TU (18)

and
ψ∗
2 g2(V, V ) < (1+ ϵ)2ψ∗

1 g1(V, V ) ∀ V ∈ TU. (19)

Taking the extrinsic diameter,

DUi = sup{diamMi (W ) : W is a connected component of Ui } ≤ diam(Mi ), (20)

we define a hemispherical width,

a >
arccos(1+ ϵ)−1

π
max{DU1 , DU2}. (21)

Taking the difference in distances with respect to the outside manifolds,

λ = sup
x,y∈U

∣∣dM1(ψ1(x),ψ1(y)) − dM2(ψ2(x),ψ2(y))
∣∣ , (22)

we define heights,
h =

√
λ(max{DU1 , DU2} + λ/4) (23)

and
h̄ = max{h,

√
ϵ2 + 2ϵ DU1 ,

√
ϵ2 + 2ϵ DU2}. (24)

Then the Gromov–Hausdorff distance between the metric completions is bounded,

dGH (M̄1, M̄2) ≤ a + 2h̄ +max
{
dM1
H (U1,M1), d

M2
H (U2,M2)

}
(25)

and the intrinsic flat distance between the settled completions is bounded,

dF (M ′
1,M

′
2) ≤

(
h̄ + a

)
(Volm(U1)+ Volm(U2)+ Volm−1(∂U1)+ Volm−1(∂U2))

+Volm(M1\U1)+ Volm(M2\U2).

Proof See [10, Theorem 4.6]. ⊓"
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2.3 Adapted estimates

Since at the post surgery times our space is an integral current space rather than a manifold,
we can not apply the Theorem 2.5 right away. The integral current space we study, possesses
nice properties that will allow us to apply a refined version of the Theorem 2.5. This section
is devoted to prove this refined version of the estimate on the SWIF distance.

Definition 2.6 Let (M, g)be aRiemannianmanifold (possibly disconnected andwith bound-
ary). Let d : M × M → R be a metric on M . We say that the metric d is related to the
Riemannian metric g if for any smooth curve C : (−r, r) → M , we have

g
(
C ′(0),C ′(0)

)
=

(
d
dt

∣∣
t=0 d (C(t),C(0))

)2

. (26)

Lemma 2.7 Let (M, g) be a Riemannian manifold (possibly disconnected and with bound-
ary). Let d : M × M → R be a metric on M. If d is related to g, then for any smooth curve
C : (−r, r) → M, we have

Lgi (C) = Ldi (C). (27)

Proof Consult any standard text on Metric Geometry for example [5]. ⊓"

Theorem 2.8 Given a pair of geodesic metric spaces (Yi , di ), i = 1, 2 , containing integral
current spaces (Xi , di , Ti ) , i = 1, 2with restricted metrics di , suppose there are precompact
subregions Ui ⊂ set(Xi ) (possibly disconnected) that are Riemannian manifolds (possibly
with boundary) with metrics gi such that the induced integral current spaces are

(Ui , di , Ti ) , i = 1, 2, (28)

where, the metric di on Ui is restricted from di on Xi and,

Ti =
∫

Ui

, i = 1, 2. (29)

and such that the metric di is related (see Definition 2.6) to the Riemannian metric gi for
i = 1, 2.

Assume there exist diffeomorphisms ψi : U → Ui such that

ψ∗
1 g1(V, V ) < (1+ ϵ)2ψ∗

2 g2(V, V ) ∀ V ∈ TU (30)

and
ψ∗
2 g2(V, V ) < (1+ ϵ)2ψ∗

1 g1(V, V ) ∀ V ∈ TU. (31)

We take the following extrinsic diameters,

DUi = sup
{
diamXi (W ) : W is a connected component of Ui

}
≤ diam(Xi ), (32)

and define a hemispherical width,

a >
arccos(1+ ϵ)−1

π
max{DU1 , DU2}. (33)

Let the distance distortion with respect to the outside integral current spaces be

λ = sup
x,y∈U

∣∣dX1(ψ1(x),ψ1(y)) − dX2(ψ2(x),ψ2(y))
∣∣ , (34)
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we define heights,
h =

√
λ(max{DU1 , DU2} + λ/4) (35)

and
h̄ = max{h,

√
ϵ2 + 2ϵ DU1 ,

√
ϵ2 + 2ϵ DU2}. (36)

Then, the SWIF distance between the settled completions are bounded above as follows:

dF (X ′
1, X

′
2) ≤

(
2h̄ + a

)
(Volm(U1)+ Volm(U2)+ Volm−1(∂U1)+ Volm−1(∂U2))

+ ∥T1∥ (X1\U1)+ ∥T2∥ (X2\U2).

Proof The theorem begins exactly as in the proof of [10, Theorem 4.6] with a construction
of an ambient space Z .

For every pair of corresponding diffeomorphic connected components Uβ
i of Ui , we can

create a hemispherically definedfillingbridge X ′
β diffeomorphic toUβi

i ×[0, a]withmetric g′
β

satisfying (8) by applying Propositions 2.3 and 2.4 using the ai = ai (β) defined there for the
particular connected component,Uβ

i and Di = DUi . Observe that all ai ≤ a, so |t1 − t2| = a

willwork for all the connected components.Anyminimal geodesic γ : [0, 1] → Uβ
i of length

≤ DUi ≤ diamXi (Ui ) satisfies (8).
Let X ′ be the disjoint unions of these bridges. X ′ has a metric g′ satisfying (15). The

boundary of X ′ is (U, g1) ∪ (U, g2) ∪ (∂U × [0, a], g′). Therefore,

Volm(X ′) =
∑

β

Volm(X ′
β) (37)

≤
∑

β

a(Volm(U
β
1 )+ Volm(U

β
2 )) (38)

≤ a(Volm(U1)+ Volm(U2)) (39)

and
Volm

(
∂X ′\(ϕ1(U1) ∪ ϕ2(U2)

)
≤ a (Volm−1(∂U1)+ Volm−1(∂U2)) (40)

as in Proposition 2.4.
Since our regions are not necessarily convex, we cannot directly glue Xi to X ′ in order to

obtain a distance preserving embedding. We first need to glue isometric productsUβ × [0, h̄]
with cylinder metric dt2 + gi to both ends of the filling bridges, to have all the bridges
extended by an equal length on either side. This creates a Lipschitz manifold,

X ′′ = (U1 × [0, h̄]) "U1 X ′ "U2 (U2 × [0, h̄]). (41)

We then define ϕi : Ui → X ′′ such that

ϕ1(x) = (x, 0) ∈ U1 × [0, h̄] (42)

ϕ2(x) = (x, h̄) ∈ U2 × [0, h̄] (43)

Then by (37) and (40), we have

Volm+1(X ′′) = Volm+1(X ′)+ h̄(Volm(U1)+ Volm(U2)) (44)

≤ (a + h̄)(Volm(U1)+ Volm(U2)) (45)
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and

Volm
(
∂X ′′\(ϕ1(U1) ∪ ϕ2(U2)

)

= Volm
(
∂X ′\(ϕ1(U1) ∪ ϕ2(U2)

)
+ h̄(Volm−1(∂U1)+ Volm−1(∂U2)) (46)

≤ (a + h̄)(Volm−1(∂U1)+ Volm−1(∂U2)). (47)

Finally we glue Y1 and Y2 to the far ends of X ′′ along ϕi (Ui ) to create a connected length
space. This is possible since Ui ’s are manifolds and Yi s are geodesic spaces.

Z = X̄1 "U1 X ′′ "U2 X̄2 (48)

As usual, distances in Z are defined by taking the infimum of lengths of curves. Each con-
nected component, X ′′

β of X ′′ will be called the filling bridge corresponding to Uβ .
In the proof of Theorem 4.6 in [10], it is proven that ϕ1 : Y1 → Z mapping Y1 into its

copy in Z is a distance preserving embedding. The proof there is given for manifolds but it
can be easily adapted to our case since it only relies on the fact that our spaces are geodesic
spaces and the fact that gi and di are related (see Definition 2.6 ) onUi s and both conditions
are satisfied in our case. The same argument shows that ϕ2 : Y2 → Z is also a distance
preserving embedding.

In order to bound the SWIF distance, we take Bm+1 = X ′′ to be the filling current. Then
the excess boundary is

Am = ϕ1(X1\U1) ∪ ϕ2(X2\U2) ∪ ∂X ′′\(ϕ1(U1) ∪ ϕ2(U2)). (49)

Using appropriate orientations we have

ϕ1#(T1) − ϕ2#(T2) = Bm+1 + Am . (50)

Notice that (50) is true since the set (ϕi#(Ti )) = ϕi (Xi ).
The volumes of the Lipschitz manifold parts have been computed in (46) and (44). So we

get:

dF (X1, X2) ≤ Volm(U1)
(
h̄ + a

)
+ Volm(U2)

(
h̄ + a

)

+
(
h̄ + a

)
Volm−1(∂U1)+

(
h̄ + a

)
Volm−1(∂U2)

+ ∥T1∥ (X1\U1)+ ∥T2∥ (X2\U2).

⊓"

3 Ricci flow: old and new

3.1 Hamilton’s Ricci flow

Ricci flow is an evolution equation of the metric on a Riemannian manifold, introduced for
the first time by Richard Hamilton in [7] given by the following weakly parabolic equation:

d
dt

g(t) = −2Ric(t). (51)

Hamilton proved that for the initial metric g0 on a closed manifold M , the Ricci flow
equation satisfies short time existence and uniqueness. [7]
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Proposition 3.1 Suppose M is a closed manifold and let g(t) be a solution to the Ricci flow
equation on the time interval [0, T ]. If

∥Rm(t)∥ ≤ K for all t ∈ [0, T ], (52)

where ∥Rm(t)∥ is with respect to a fixed background metric g0; then, for any t1 ≤ t2 and
V ∈ T M we have the following:

e− √
nK (t2−t1)g(t2)(V, V ) ≤ g(t1)(V, V ) ≤ e

√
nK (t2−t1)g(t2)(V, V ), (53)

and therefore,

e− 1
2

√
nK (t2−t1) ≤ dM,g(t2)(x, y)

dM,g(t1)(x, y)
≤ e

1
2

√
nK (t2−t1) (54)

Proof c.f. [6]. ⊓"

The above result also holds locally, namely:

Proposition 3.2 Suppose M is a closed manifold and let g(t) be a solution to the Ricci flow
equation on the time interval [0, T ] and + ⊂ M an open subset of the manifold then, if

sup
x∈+

∥Rm(x, t)∥ ≤ K for allt ∈ [0, T ], (55)

where, ∥Rm(x, t)∥ is with respect to a fixed background metric g0; then, for any t1 ≤ t2 and
V ∈ T+ we have the following:

e− √
nK (t2−t1)g(t2)(V, V ) ≤ g(t1)(V, V ) ≤ e

√
nK (t2−t1)g(t2)(V, V ) (56)

Proof c.f. [6]. ⊓"

3.2 Ricci flow neckpinch

In this section, we will review the results about neckpinch singularity obtained by Angenent–
Knopf [3,4] and Angenent–Caputo–Knopf [1]. We will repeat some of their Theorems and
Lemmas from their work that we will be using later on in this paper. A nondegenerate
neckpinch is a local type I singularity (except for the round sphere shrinking to a point) is
arguably the best known and simplest example of a finite-time singularity that can develop
through the Ricci flow. A nonegenerate neckpinch is a type I singularity whose blow up limit
is a shrinking cylinder soliton. more precisely,

Definition 3.3 a solution
(
Mn+1, g(t)

)
of Ricci flow develops a neckpinch at a time T < ∞

if there exists a time-dependent family of proper open subsets U (t) ⊂ Mn+1 and diffeo-
morphisms φ(t) : R × Sn → U (t) such that g(t) remains regular on Mn+1\U (t) and the
pullback φ(t)∗ (g(t)) on R × Sn approaches the shrinking cylinder soliton metric

ds2 + 2(n − 1)(T − t)gcan (57)

For the first time,Angenent–Knopf in [3] rigorously proved the existence of nondegenerate
neckpinch on the sphere Sn+1 in [3]. Their main result in [3] is as follows:

Theorem 3.4 (Angenent–Knopf [3]) If n ≥ 2, there exists an open subset of the family
of metrics on Sn+1 possessing SO(n + 1) symmetries such that the Ricci flow starting at
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any metric in this set develops a neckpinch at some time T < 1. The singularity is rapidly-
forming (Type I), and any sequence of parabolic dilations formed at the developing singularity
converges to a shrinking cylinder soliton.

ds2 + 2(n − 1)(T − t)gcan . (58)

This convergence takes place uniformly in any ball of radius

o

(√
(T − t) log

1
T − t

)

, (59)

centered at the neck.
Furthermore, there exist constants 0 < δ,C < ∞ such that the radius ψ of the sphere at

distance σ from the neckpinch is bounded from above by

ψ ≤
√
2(n − 1)(T − t)+ Cσ 2

− log (T − t)
√
T − t

, (60)

for |σ | ≤ 2
√
(T − t) log (T − t), and,

ψ ≤ C
σ

√
− log (T − t)

√
log

σ

−(T − t) log (T − t)
, (61)

for 2
√
(T − t) log (T − t) ≤ σ ≤ (T − t)

1
2−δ

The class of initial metrics for which we establish “neckpinching” is essentially described
by three conditions: (i) the initialmetric should have positive scalar curvature, (ii) the sectional
curvature of the initial metric should be positive on planes tangential to the spheres {x}×Sn ,
and (iii) the initial metric should be “sufficiently pinched”.

Lemma 3.5 There is a constant C depending on the solution g(t) such that:

∥Rm∥ ≤ C
ψ2 (62)

Proof See the Lemma 7.1 in [3]. ⊓"

3.3 Diameter Bound

The following diameter bound argument is necessary before we can talk about the intrinsic
flat convergence. Proposition 3.6 in below is taken from [4]. We are also including the proof
of this Proposition from [4] for completeness of exposition because we need the estimates
in the proof as well as the result itself.

Proposition 3.6 (Angenent–Knopf [4]) Let (Sn+1, g(t)) be any SO(n+1) invariant solution
of the Ricci flow such that g(0) has positive scalar curvature and positive sectional curvature
on planes tangential to the spheres x × Sn, assume that in the language of [3], each g(t) has
at least two bumps for all t < T . Let x = a(t) and y = b(t) be the locations of the left- and
right- most bumps, and assume that for all t < T , one hasψ(a(t), t) ≥ c andψ(b(t), t) ≥ c
for some constant c > 0. If g(t) becomes singular at T < ∞, then diam(Sn+1, g(t)) remains
bounded as t ↗ T .
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Proof (Angenent and Knopf [4]) By Proposition 5.4 of [3], the limit profile ψ( . , T ) exists.
let a(t) → a(T ) and b(t) → b(T ). By lemma 5.6 of [3], the Ricci curvature is positive (and
so the distances are decreasing) on (−1, a(t)] and [b(t), 1). Hence it will suffice to bound
d(M,g(t))(x1, x2) for arbitrary x1 < x2 in (a(T ) − ϵ, b(T )+ ϵ) ⊂ (−1, 1).

Equations (5) and (11) of [3] imply that

d
dt

dM,g(t)(x1, x2) =
d
dt

∫ x2

x1
φ(x, t) dx

= n
∫ s(x2)

s(x1)

ψss

ψ
ds (63)

= n

{
ψs

ψ

∣∣∣∣
s(x2)

s(x1)
+

∫ s(x2)

s(x1)

(
ψs

ψ

)2

ds

}

.

Proposition 5.1 of [3], bounds ψs uniformly, while lemma 5.5 shows that the number of
bumps and necks are non-increasing in time. It follows that:

∫ s(x2)

s(x1)

(
ψs

ψ

)2

ds ≤ C
∫ s(x2)

s(x1)

|ψs |
ψ2 ds

≤ C
[

1
ψmin(t)

− 1
ψmax (t)

]
(64)

≤ C
ψmin(t)

.

Hence Lemma 6.1 of [3] lets us conclude that:
∣∣∣∣
d
dt

dM,g(t)(x1, x2)
∣∣∣∣ ≤ C√

T − t
, (65)

which is obviously integrable. ⊓"

Lemma 3.7 (Angenent–Knopf [3]) If the diameter of the solution g(t) stays bounded as
t ↗ T then ψ(s, T ) > 0 for all 0 < s < D/2, where D is defined as D = limt↗T ψ(x∗(t),
t) in which x∗(t) denotes the location of the right bump.

Proof See the Lemma 10.1 of [3]. ⊓"

3.4 Smooth forward evolution of Ricci flow

In this section we will review the results obtained by Angenent, Caputo and Knopf in [1]
about the neckpinch on the sphere in any dimension and their attempt to find a canonical way
to perform surgery at the singular time (in this case, finding a limit for surgeries whose scale
of the surgery is going to zero).

Consider the degenerate metric g(T ) resulted from the Ricci flow neckpinch on Sn+1 as
described earlier. Angenent–Caputo–Knopf in [1] construct the smooth forward evolution
of Ricci flow by regularizing the pinched metric in a small neighborhood of the pinched
singularity (of scale ω) and hence producing a smooth metric gω. Notice that performing
surgery at a small scale ω produces two disjoint Ricci flows. For simplicity, we only consider
one of these resulting spheres and then we assume that the north pole is the future of the
neckpinch point singularity. By the short time existence of Ricci flow, for any small scale
ω, the flow exists for a short time depending on ω. Using the asymptotics for Ricci flow
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neckpinch derived in Angenent–Knopf [3], they find a lower bound for themaximal existence
time Tω of the Ricci flows gω(t) with initial metrics gω. Of course, as ω → 0, one has
gω → g(T ) away from the point singularity. Now the question is if also the resulting Ricci
flow solutions gω(t) admit a limit as ω → 0. They prove that this is in fact the case by
proving bounds on the curvature off the singularity and then proving a compactness theorem.
This limit flow is called the smooth forward evolution of Ricci flow out of a neckpinch
singularity.

Angenent–Caputo–Knopf [1] show that a smooth forward evolution of Ricci flow out
of a neckpinch singularity comes from (via a change of variable) a positive solution of the
following quasilinear PDE:

vt = vvrr − 1
2
v2 + n − 1 − v

r
vr +

2(n − 1)
r2

(v − v2) (66)

with the singular initial data:

vini t (r) = [1+ o(1)]v0(r) as r ↘ 0, (67)

where

v0(r) !
1
4 (n − 1)

− log r
. (68)

One notices that away from the point singularity, any smooth forward evolution of (67)
has to satisfy

lim
t↘0

v(r, t) = vini t (r) (69)

They prove that the only way, a solution to this equation can be complete is if v satis-
fies the smooth boundary condition v(0, t) = 1 which is incompatible with the fact that
limr↘0 vini t (r) = 0. Roughly speaking, this means that for any forward evolution of Ricci
flow, v immediately jumps at the singular hypersurface {0}×Sn , yielding a compact forward
evolution that replaces the singularity with a smooth n-ball by performing a surgery at scale
0. See Fig. 1.

For given small ω > 0, they split the manifold Sn+1 into two disjoint parts, one of which
is the small neighborhoodNω of the north pole in which ψT (s) < ρ∗

√
ω (See [1] for details

about this construction).
They keep the metric unchanged on Sn+1\Nω. Within Nω, they take gω to be a metric of

the form
gω = (ds)2 + ψω(s)2gcan, (70)

Fig. 1 Angenent–Caputo–Knopf Ricci flow through neckpinch singularity. Credits: Illustration by Penelope
Chang
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where ψT is a monotone when ψω(s) ≤ ρ∗
√

ω . Monotonicity of ψ in Nω, allows them to
perform the change of variables r = ψ(s). In this new coordinate, one sees that gω is of the
form:

gω = dr2

vω(r)
+ r2gcan . (71)

Angenent–Caputo–Knopf then proceed to apply a maximum principle to find sub- and
supersolutions of this equation which bound all the positive solutions. A detailed analysis of
these bounds enables them to prove curvature estimates that are required in their compactness
theorem (see [1] for further details).

The main theorem of Angenent–Caputo–Knopf’s work about the smooth forward evolu-
tion of the Ricci flow past the singularity time is as follows:

Theorem 3.8 (Angenent–Caputo–Knopf [1]) For n > 2, let g0 denote a singular Rie-
mannian metric on Sn+1 arising as the limit as t ↗ T of a rotationally symmetric neckpinch
forming at time T . Then there exists a complete smooth forward evolution

(
Sn+1, g(t)

)
for T < t < T1, (72)

of g(T ) by Ricci flow. Any complete smooth forward evolution is compact and satisfies a
unique asymptotic profile as it emerges from the singularity. In a local coordinate 0 < r <

r∗ ≪ 1 such that the singularity occurs at r = 0 and the metric is

g(r, t) = dr2

v(r, t)
+ r2gcan (73)

This asymptotic profile is as follows:
Outer region For c1

√
t − T < r < c2, one has:

v(r, t) = [1+ o(1)] n − 1
−4 log r

[
1+ 2(n − 1) t−T

r2

]
uniformly as t ↘ T . (74)

Parabolic region Let ρ = r√
t−T

and τ = log (t − T ); then for c3√−τ
< ρ < c4, one has:

v(r, t) = [1+ o(1)]n − 1
−2τ

[
1+ 2(n − 1)

ρ2

]
uniformly as t ↘ T . (75)

Inner region Let σ = √−τρ =
√

−τ
t−T r; then for 0 < σ < c5, one has:

v(r, t) = [1+ o(1)]B
(

σ

n − 1

)
uniformly as t ↘ T . (76)

where dσ 2

B(σ ) + σ 2gcan is the Bryant soliton metric.
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Remark 3.9 In the work of Angenent–Caputo–Knopf [1], assumptions on the singular initial
metric g(T ) = ds2 + ψT (s)2gcan is as follows:

(M1) ψT (s) > 0 for all s ∈ J

(M2) ψT (0) = ψT (l) = 0

(M3) ψ ′
T (l) = −1

(M4) ψT (s)2 =
(
n − 1
4

+ o(1)
)

s2

− log s
(s ↘ 0)

(M5) ψT (s)ψ ′
T (s) =

(
n − 1
4

+ o(1)
)

s
− log s

(s ↘ 0)

(M6)
∣∣ψ ′

T (s)
∣∣ ≤ 1 (0 < s < l)

(M7) ∃r# > 0,ψ ′
T (s) ̸= 0 whenever ψT (s) < 2r#

(M8) ∃A ∀s ∈ J, |aT (s)| ≤ A (where a0(s) = ψ ′
Tψ ′′

T − ψ ′2
T + 1) (77)

See [3] and [1] for details.

4 Continuity of Angenent–Caputo–Knopf’s smooth forward evolution

In this section, we will study the continuity of Ricci flow through singularities under the
intrinsic flat distance. Though there is a caveat to this claim; At the post surgery times, our
flow consists of two separate Ricci flows on two disjoint manifolds that are not canonically
embedded into a space and hence there is no a priori metric that makes this disjoint union of
manifolds into a metric space. So in order to makes sense of different notions of convergence
at post surgery times, we need to first define a metric on this disjoint union. Here we will
assume that the two parts at the post surgery time t are connected by a thread of length L(t)
which joins the future (two points) of the singular point. We also notice that since the thread
is one dimensional, it does not contribute in the settled completion of the resulting current
space. Also naturally we require

lim
t↘T

L(t) = L(0) = 0. (78)

Our main theorem is the following:

Theorem 4.1 The compact Ricci flow through singularities obtained by smooth forward
evolution of the Ricci flow out of a neckpinch singularity on the n + 1-sphere (as in [1]) is
continuous under the Sormani–Wenger intrinsic flat distance (SWIF).

Proof Combining Lemmas 4.5 and 4.7 completes the proof. ⊓"

4.1 Smooth Ricci flow

Herewe estimate the intrinsic flat distance between two times of a compact smooth Ricci flow
defined on [0, T ) which will be easily derived from Theorem 2.5. Since as t → t0 ∈ [0, T )
we have

g(t) → g(t0) (79)

uniformly in smooth norm, it is not surprising that we must also have:

123



Geom Dedicata (2015) 179:69–89 83

dF
(
(M, g(t)) , (M, g(t0))

)
→ 0. (80)

as t → t0. In fact, we have

Lemma 4.2 Suppose (Mn, g(t)) is a smooth solution of Ricci flow on a closed manifold Mn

defined on the time interval [0, T ). Then, for any t1, t2 ∈ [0, T )

dF
(
(M, g(t1)) , (M, g(t2))

)

≤
arccos

(
e
1
2

√
nC(t1−t2)

)

π
max {diam (M, g(t1)) , diam (M, g(t2))} (81)

where C is a uniform upper bound for ∥Rm∥.

Proof Since the flow is smooth on [0, T ), for any compact sub-interval J ⊂ [0, T ) we have
sup
Mn×J

∥Rm∥ ≤ C = C(J ). (82)

with respect to the initial metric g0 on Mn .
By applying Theorem 3.1, we get

e− √
nC(t2−t1)g(t2)(V, V ) ≤ g(t1)(V, V ) ≤ e

√
nC(t2−t1)g(t2)(V, V ), (83)

Let ϵ = e
1
2

√
nC(t2−t1) − 1 then (83) gives

g(t1)(V, V ) ≤ (1+ ϵ)2 g(t2)(V, V ), (84)

and
g(t2)(V, V ) ≤ (1+ ϵ)2 g(t1)(V, V ). (85)

Finally using Proposition 2.4, we get:

dF
(
(M, g(t1)) , (M, g(t2))

)

≤
arccos

(
e
1
2

√
nC(t1−t2)

)

π
max {diam (M, g(t1)) , diam (M, g(t2))} . (86)

⊓"

4.2 Ricci flow through the singularity as an integral current space

Let (M, g(t)) be the Angenent–Knopf’s example. At any time t < T , (M, g(t)) is a Rie-
mannian manifold. As before, taking the current structure

T =
∫

M
(87)

on M , one can think of (M, g(t)) as an integral current space.
It is well-known that any point p in any Riemmanian manifold M is asymptotically

Euclidean hence
%∗(p) = 1, (88)

and as a result, set(M) = M .
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Fig. 2 The ambient space for Angenent–Caputo–Knopf’s Ricci flow through neckpinch singularity (not
settled). Credits: Illustration by Penelope Chang

Fig. 3 Angenent–Caputo–Knop’sRicci flow through neckpinch singularity viewed as a settled flowof integral
current spaces. Credits: Illustration by Penelope Chang

At the singular time t = T , the metric g(T ) is degenerate at the level set {0} × Sn but
nonetheless still gives rise to the distance metric d on the pinched sphere by minimizing the

length L(γ ) =
∫
γ

(
g(γ ′(s), γ ′(s)

) 1
2 ds along curves as usual. The pinched sphere (M, g(T ))

is again an integral current space. One way to see this is that one observes that the pinched
sphere is a union of two C1—manifolds and the singular point which is of course of measure
0. See Fig. 2.

The caveat here is that when considering the singular (M, g(T )) as an integral current
space, by definition, we need to only consider the settled completion i.e. the points with
positive density (see Fig. 3). The Lemma 4.3 below computes the settled completion.

Lemma 4.3 Let p be the singular point in the pinched sphere (M, g(T )) then,

set(M, g(T )) = M\{p}. (89)

Proof According to [1, Table 1] (or Remark 3.9 in this paper), at the singular time T , for the
singular metric

g(T ) = ds2 + ψT (s)gcan (90)

we have:
ψT (s) ∼ s |ln s|− 1

2 as s → 0 (91)
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therefore, one computes

%∗(p) = lim inf
r→0

Vol(B(p, r))
rn+1 (92)

≤ C lim inf
r→0

∫ r
0 s

(
s |ln s|− 1

2

)n

rn+1 (93)

≤ C lim inf
r→0

rn+1
(
|ln r |− 1

2

)n

rn+1 (94)

= C lim inf
r→0

(
| ln r |− 1

2

)n
(95)

= 0, (96)

which means that the singular point p /∈ set(M, g(T )).
For all the regular points x ∈ M\{p}, we again have

%∗(x) = 1. (97)

This concludes the proof. ⊓"
At the post surgery times t > T , the flow is a result of the smooth forward evolution as

in [1] and hence consists of two separate smooth pointed Ricci flows (Mi , gi (T ), pi ) i = 1, 2
obtained by regularizing the metric at the singular time. Points pi are just the future of the
singular point p. Again in order to work in the framework of integral current spaces, we
first need to make the post surgery flow into a metric space and also define an appropriate
current structure on it. One way to make a current space out of the disjoint union M1 " M2 as
suggested by Knopf is to attach them by a thread. Another way is to define the metric using
techniques from optimal transport which is described in the work of Author with Munn [9].
Here, we will focus on the thread approach.

We should clarify that the added thread joins p1 to p2, has length L(t)which is continuous
with respect to t and satisfies

lim
t↘T

L(t) = 0. (98)

4.3 Continuity and volume convergence as t ↗ T

Consider the neckpinch on the sphere with bounded diameter. Our goal is to use Theorem
2.8 to find an estimate on the intrinsic flat distance between the sphere prior to the singular
time and the pinched sphere.

Lemma 4.4 Let (M, g(t)) be the Ricci flow on the n+1-sphere with a neckpinch singularity
at time T . Then we have the following metric distortion estimate:

∣∣d(M,g(T ))(x1, x2) − d(M,g(t))(x1, x2)
∣∣ ≤ C

√
T − t . (99)

Proof From the proof of Proposition 3.6, we have:
∣∣∣∣
d
dt

d(M,g(t))(x1, x2)
∣∣∣∣ ≤ C√

T − t
. (100)

Hence a simple integration shows that
∣∣d(M,g(T ))(x1, x2) − d(M,g(t))(x1, x2)

∣∣ ≤ C
√
T − t . (101)

⊓"
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Lemma 4.5 For the neckpinch on the n + 1-sphere, we have:

lim
t↗T

dF
(
(M, g(t)), (M, g(T ))

)
= 0. (102)

Proof Notice that From Lemma 3.7, we know that the pinching occurs only at the equator
given by x = 0. LetM = Sn+1 and S be the n+1 sphere, the singular set {x = 0} respectively.
Let Uj be the exhaustion of M\S defined by:

Uj = {(x, θ) ∈ M : |x | ≥ 1/j} . (103)

Each Uj consists of two connected components Uβ
j , β = 1, 2. Fix j , then from Lemma

3.5, There is constant C j depending on j and the solution g(t) such that :

sup
Uj

∥Rm∥ ≤ C j . (104)

Therefore by Proposition 3.2, we have:

e− √
nC j (t2−t1)g(t2)(V, V ) ≤ g(t1)(V, V ) ≤ e

√
nC j (t2−t1)g(t2)(V, V ), (105)

and letting t2 ↗ T , we get:

e− √
nC j (T−t)g(T )(V, V ) ≤ g(t)(V, V ) ≤ e

√
nC j (T−t)g(T )(V, V ), (106)

where V ∈ TU j .
Therefore, in the setting of the Theorem 2.8, we let ϵt j = e

√
nC j (T−t) − 1. We also need

to compute the distortion λt, j between these two length spaces which is defined as:

λt j = sup
x,y∈Uj

∣∣d(M,g(t))(ψ1(x),ψ1(y)) − d(M,dT )(ψ2(x),ψ2(y))
∣∣ . (107)

Let x ∈ U 1
j and y ∈ U 2

j then from Proposition 3.6, we obtain the following estimates on
the distortion of distances which is independent of j ; i.e.

λt j ≤ C
√
T − t . (108)

As in Theorem 2.8, let

ht j =
√

λt j

(
max

{
DU1

j
, DU2

j

}
+ λt j/4

)
, (109)

and,

h̄t j = max
{
ht j ,

√
ϵ2t j + 2ϵt j DU1

j
,
√

ϵ2t j + 2ϵt j DU2
j

}
. (110)

For fixed j , as t ↗ T , we have:

ϵt j → 0 and λt j → 0. (111)

Therefore for all j :

lim
t↗T

dF ((M, g(t)), (M, dT )) ≤ Volg(t)(M\Uj )+ Volg(T )(M\Uj ), (112)

Also since the diameter stays bounded as t ↗ T , one sees that as j → ∞,

Volg(t)(M\Uj ) and Volg(T )(M\Uj ) → 0. (113)
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Therefore,
lim
t↗T

dF ((M, g(t)), (M, g(T ))) = 0. (114)

⊓"
Remark 4.6 Since the diameter stays bounded as t ↗ T , (113) implies the volume conver-
gence

Vol (M, g(t)) → Vol (M, g(T )) (115)

4.4 Continuity and volume convergence as t ↘ T

To complete the proof of the continuity of the Smooth Forward Evolution of the Ricci flow
out of neckpinch singularity, we need to also prove the continuity as the time approaches the
singular time from the post surgery times. For simplicity we let T = 0 then, post surgery
times will correspond to positive values of t .

Our flow at the positive time t > 0 consists of two pointed smooth Ricci flows
(M1, g1(t), p1) and (M2, g2(t), p2) both modeled on the n + 1-sphere and a thread of
length L(t) joining p1 to p2. As before, we let (M, g(t)) denote the pre-surgery Ricci
flow and (M, g(T )) to be the singular space at the singular time T . Also we let X =
(M1 ∪ M2, D(t), T (t)) be the current space associated to the post surgery time t , where

D(t)(x, y) =

⎧
⎪⎨

⎪⎩

d1(t)(x, y) x, y ∈ M1

d2(t)(x, y) x, y ∈ M2

L(t)+ d1(t)(x, p1)+ d2(t)(y, p2) x ∈ M1 and y ∈ M2,

where, di (t) is the metric induced by the Riemannian metric gi (t) on Mi .

Lemma 4.7 If (Mi , gi (t), pi ) i = 1, 2 represent the two parts of the post-surgery Ricci flow
(t > T = 0) obtained by smooth forward evolution out of a neckpinch singularity and if L(t)
is the length of the thread joining p1 and p2 at time t with

lim
t↘0

L(t) = 0, (116)

then, letting X = M1 ∪ M2, we have:

lim
t↘0

dF
(
(X, D(t), T (t)) , (M, g(T ))

)
= 0. (117)

Proof Similar to the proof of the continuity for pre-surgery times, we need to find proper
diffeomorphic open subsets. For fixed small ω > 0 consider the open subsets N i

ω ⊂ Mi for
as defined in Sect. 3.4. Let U1 be the open subset of M defined by:

U1 = M\
(
N̄ 1

ω ∪ \N̄ 2
ω

)
, (118)

therefore,U1 is comprised of two connected components Uβ
1 for β = 1, 2.

And let U2 be the open subset of M1 ∪ L(t) ∪ M2 defined as

U2 =
(
M1\N̄ 1

ω

)
∪

(
M2\N̄ 2

ω

)
. (119)

Then obviously, these two open sets are diffeomorphic through diffeomorphisms between
their corresponding connected components:

ψ1 : W1 → M1\N̄ 1
ω (120)

ψ2 : W2 → M2\N̄ 2
ω. (121)
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Now let ϵ(t) be the smallest positive number for which

ψ∗
i gi (t)(V, V ) < (1+ ϵ(t))2g(T )(V, V ) ∀ V ∈ TWi (122)

and
ψ∗
i gi (t)(V, V ) < (1+ ϵ(t))2g(T )(V, V ) ∀ V ∈ TWi . (123)

then, by the construction of the Smooth Forward Evolution as seen in Sect. 3.4, as t ↘ 0 ,
the metrics ψ∗

i gi (t) smoothly converge to g(T ) on Wi therefore,

lim
t↘0

ϵ(t) = 0. (124)

Now let ω j > 0 be a sequence for which

lim
j→∞

ω j = 0 (125)

and consider the length distortions:

λt j = sup
x,y∈U1

∣∣d(X,D(t))(ψ1(x),ψ1(y)) − d(M,dT )(x, y)
∣∣ . (126)

Then,

λt j ≤ L(t)+
(
(1+ ϵ(t))2 − 1

)(
diam (M1, g1(t))+ diam (M2, g2(t))

)
(127)

As in Theorem 2.5, we define

ht j =
√

λt j (max{DU1
j
, DU2

j
} + λt j/4) , (128)

and,

h̄t j = max{ht j ,
√

ϵ2t j + 2ϵt j DU1
j
,
√

ϵ2t j + 2ϵt j DU2
j
}. (129)

For fixed j , as t ↘ T , we have:

ϵt j → 0 and λt j → 0. (130)

Therefore for all j :

lim
t↘T

dF ((X, D(t)), (M, g(T )) ≤ Volg(t)(X\U2)+ Volg(T )(M\U1), (131)

Also since the diameter stays bounded as t ↘ T , one sees that as j → ∞,

Volg(T )(M\U1) and Volg(t)(X\U2) → 0. (132)

Therefore,
lim
t↘T

dF
(
(X, D(t)) , (M, g(T ))

)
= 0. (133)

⊓"

Remark 4.8 Notice that since the diameter is bounded as t ↘ T , (132) gives

Vol (M1, g1(t))+ Vol (M2, g2(t)) → Vol (M, g(T )) (134)

By applying Theorem 2.8, we can also find an estimate on the intrinsic flat distance
between two post surgery integral current spaces at times 0 < t1 < t2.
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Theorem 4.9 Suppose (X, D(t), T (t)) is as before, and the smooth flows (M1, g1(t)) and
(M1, g1(t)) do not encounter singularities on (0, T ), then as t → t0 ∈ (0, T ), we have

lim
t→t0

dF
(
(X, D(t)) , (X, D(t))

)
= 0. (135)

Proof Since the post surgery flows do not encounter any other singularity on (0, T ), we have

sup
Mi×[t0−δ,t0+δ]

∥Rm∥ ≤ C = C(δ) (136)

with respect to a fixed background metric g0 on M1 " M2.

Let ϵ(t) = e
1
2

√
nC |t−t0| − 1 and let ω j > 0 be a sequence with

lim
j→∞

ω j = 0. (137)

DefineUi as in Lemma 4.7. Then, we have the following estimate on the metric distortion

λt j = sup
x,y∈U1

∣∣d(X,D(t0))(x, y) − d(X,D(t))(x, y)
∣∣

≤ |L(t)−L(t0)|+
(
(1+ ϵ(t))2−1

)(
diam (M1, g1(t))+diam (M2, g2(t))

)
(138)

We observe that as t → t0, ϵ(t) → 0 and L(t) → L(t0) due to continuity therefore,
λt j → 0. The rest of the proof is the same as in Lemma 4.7. ⊓"
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