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Non-branching RCD(0,N) Geodesic Spaces
with Small Linear Diameter Growth have
Finitely Generated Fundamental Groups

Yu Kitabeppu and Sajjad Lakzian

Abstract. In this paper, we generalize the ûnite generation result of Sormani to non-branching
RCD(0,N) geodesic spaces (and in particular, Alexandrov spaces)with full support measures. _is
is a special case of the Milnor’s Conjecture for complete non-compact RCD(0,N) spaces. One of
the key tools we use is the Abresch–Gromoll type excess estimates for non-smooth spaces obtained
by Gigli–Mosconi.

1 Introduction

In [17],Milnor conjectures that a complete non-compact Riemannian manifold,Mn ,
with non-negative Ricci curvature possesses a ûnitely generated fundamental group.
_e ûnite generation of fundamental group has been proved in the following cases:
(a) If M has non-negative sectional curvature (Cheeger-Gromoll [9]).
(b) When M is three dimensional and Ric > 0 (Schoen-Yau [22]).
(c) _e complete three dimensional Milnor’s conjecture (Liu [15]).
(d) When M has Euclidean volume growth (Anderson [3] and Li [14]).
(e) Mn has small diameter growth (O(r 1

n )) and sectional curvature bounded below
(Abresch–Gromoll [1]).

Notice that when n = 2, the result follows from (a), since Ric ≥ 0 is the same as
non-negative sectional curvature.
As far as ûnite generation results in non-smooth spaces satisfying curvature-di-

mension bounds, Bacher-Sturm in [4] prove the ûnite generation of the fundamental
group for CD(K ,N) spaces with K > 0. _is is a result of theMyer’s _eorem in the
non-smooth setting.

Sormani [24] proves that a Riemannian manifold Mn (n ≥ 3) with Ric ≥ 0 has a
ûnitely generated fundamental group if it has small linear diameter growth,
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lim sup diam ∂(B(p, r))
r

< 4Sn ,

where the universal constant Sn (coming from the Abresch–Gromoll excess estimate)
is

Sn ∶= (4 ⋅ 3n( n − 1
n − 2

)
n−1 n − 1

n
)
−1

.

_is resultwas later extended to smoothmetricmeasure spaceswith non-negative
Bakery–Emery Ricci curvature (seeWei [27]).
Following the recent progress in the study ofmetric-measure spaces having curva-

ture bounded from below in the sense of Lott–Sturm–Villani that are also inûnitesi-
mallyHilbertian, i.e., having a linear Laplacian (seeGigli [10]), comemany tools that
were previously only available in the Riemannian setting. Among these tools are the
splitting theorem and Abresch–Gromoll excess estimates [12] and [11], to name a few.

Our purpose in this paper is to extend the abovementioned result of Sormani [24]
to the spaces satisfying the curvature-dimension condition CD(0,N) that are also
inûnitesimallyHilbertian (in short, RCD(0,N) spaces). In the course of the proof, it
will become clear that we need to assume some other metric conditions on the space,
but the general approach is reminiscent of that of [24]. _e main theorem of this
paper follows.

_eorem 1.1 Let (X , dX ,m) be a connected, semi-locally simply connected, and non-
branching geodesic metric-measure space with supp(m) = X. Suppose X satisûes the
CD(0,N) curvature-dimension conditions that is also inûnitesimallyHilbertian (see [2]
for the detailed deûnition). If X has small linear diameter growth

lim sup diam ∂(B(p, r))
r

< 4SN ,

where

SN =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(9 N−1
2−N + 4)−1 if 1 < N < 2,

1
13 if N = 2,
(4 + 2 ⋅ 3N( N−1

N−2 )
N−1 N−1

N )−1 if N > 2,

then X has a ûnitely generated fundamental group.

Since the fundamental group and the diameter growth in nature are independent
from the measure on the space, we can rephrase our main theorem in the following
diòerent, but more enlightening,manner.

Corollary 1.2 Let (X , dX) be a connected, semi-locally simply connected, and non-
branching geodesic metric space with small linear diameter growth. If one can ûnd
a Borel measure m on X with supp(m) = X and for which (X , dX ,m) becomes an
RCD(0,N) space, then π1(X) is ûnitely generated.
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Remark 1.3 One might be interested in using the Corollary 1.2 to produce many
non-branching examples (andnotnecessarily coming fromFinslermanifolds) ofmet-
ric spaces that do not posses any Borel measures with full support that would make
the space an RCD(0,N) space.

When the underlying space is non-negatively curved in the Alexandrov sense, our
result simpliûes to the following corollary.

Corollary 1.4 Let X be a metric space with non-negative curvature in the sense of
Alexandrov; then X has a ûnitely generated fundamental group if X has small diameter
growth.

Remark 1.5 Perelman [19] proved that any non-compact non-negatively curved
Alexandrov space X has a closed totally convex subset S, which is a deformation re-
traction of X. _us, the fundamental group of X is isomorphic to that of S; accord-
ingly, it isûnitely generated. Corollary 1.4 gives a diòerentproof forAlexandrov spaces
with small diameter growth.

_is paper is organized as follows. Section 2 is devoted to a brief review of excess
estimates in a non-smooth setting. In Section 3, we will discuss universal coverings
of RCD(K ,N) spaces and their properties. In Section 4, we generalize the half way
and uniform cut lemmas to non-smooth spaces, and the proofs of _eorem 1.1 and
Corollary 1.4 are presented in Section 5.

2 RCD(0,N) Spaces and Excess Estimates

2.1 Abresch–Gromoll Excess Estimates

Let M be a complete Riemannian manifold. Take two distinct points y1 , y2 ∈ M and
ûx them; then for any x ∈ M, the excess e(x) is

e(x) ∶= d(x , y1) + d(x , y2) − d(y1 , y2).

It is straightforward that e(x) is a Lipschitz function with Lipschitz constant 2.
Now suppose γ is aminimal geodesic connecting y1 and y2 and deûne the leg and

height functions l(x) and h(x) (resp.) as

l(x) ∶= min{d(x , y1), d(x , y2)} and h(x) ∶= min
t
d(x , γ(t)).

_e triangle inequality implies e(x) ≤ 2h(x).
_e signiûcance of the Abresch–Gromoll excess estimate is that they give a non-

trivial upper bound for the excess that has the right asymptotic behavior.
Abresch and Gromoll [1] prove that when Ric ≥ 0 and when h(x) ≤ l(x)

2 ,

e(x) ≤ 4( hn(x)
l(x) )

1/(n−1)
.
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2.2 RCD(0,N) Spaces

Sturm in [25, 26] and Lott and Villani in [16] independently developed a notion of a
metric measure space having Ricci curvature being bounded from below by K ∈ R
and dimension bounded above by N ∈ [1,∞]. _e conditions that these spaces must
satisfy are called the curvature-dimension conditions, and these spaces are said to be
of class CD(K ,N).

_ese curvature-dimension bounds actually generalize the smoothRicci curvature
bounds for Riemannian manifolds. Another nice property of the CD(K ,N) classes
is their closedness under measured Gromov–Hausdorò convergence (cf. [16]).

In order to get a “local-to-global" property on top of the aforementioned proper-
ties, Bacher and Sturm [4] introduce a variation of the curvature-dimension condi-
tions that is called the reduced curvature-dimension condition, i.e., CD∗(K ,N).

_e CD∗(K ,N) condition, while being a local condition, can be realized by some
non-linear Finsler structures. It iswell known (see Cheeger–Colding [7,8]) that non-
linear Finsler structures do not arise as limits of Riemannian structures with Ricci
curvature bounded below and they can exhibit undesirable behaviour that would not
match with our expectation of a space with curvature bounded below.

To exclude these non-linear anomalies, Ambrosio–Gigli–Savare [2] deûne the no-
tion of a space being “inûnitesimallyHilbertian" spaces. Towit, inûnitesimallyHilber-
tian means that the space enjoys a linear Laplacian or equivalently the Sobolev space
W 1,2(X , dX ,m) is Hilbert. An RCD(K ,N) space is a CD(K ,N) space that is also
inûnitesimally Hilbertian.

_e RCD(K ,N) condition is again stable under measured Gromov–Hausdorò
convergence and is also compatible with the smooth Riemannian setting.
A key property that we will beneût from in our arguments is that CD∗(0,N) =

CD(0,N). See [4] for a proof. _is means that RCD(0,N) spaces (or equivalently
RCD∗(K ,N) spaces) enjoy a nice local to global property.

2.3 Excess Estimates for RCD(K,N) Spaces

Gigli andMosconi [12] prove Abresch–Gromoll type excess estimates for RCD(0,N)
spaces. _ey also generalize Cheeger and Colding’s excess estimates that appeared
in [6]. For the sake of clarity, we will outline Gigli andMosconi’s result in below.

Let (X , dX ,m) be an RCD(K ,N) space for some K ≤ 0 and for 1 < N < ∞. Let
x̄ ∈ supp(m) be a point in the support of the background measure. Furthermore,
assume that the leg and height functions satisfy h(x̄) < l(x̄); then
(2.1)

e(x̄) ≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2 N−1
N−2(DK ,N(x̄)hN(x̄))

1
N−1 if N > 2,

N
2−NDK ,N(x̄)h2(x̄) if 1 < N < 2,
DK ,N(x̄)h2(x̄)( 1

1+
√

1+D2(x̄)h2(x̄)
+ log 1+

√
1+D2(x̄)h2(x̄)

DK ,N(x̄)h(x̄)
) if N = 2,



Fundamental Groups in RCD(0,N) 791

where

DK ,N(x̄) = ( sK ,N(h(x̄))
h(x̄) )

N−1 cK ,N(l(x̄) − h(x̄))
N

,

sK ,N(θ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√
N−1
K sin(θ

√
K

N−1) if K > 0,
θ if K = 0,√

N−1
−K sinh(θ

√
−K
N−1) if K < 0,

and

cK ,N(θ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

N − 1
θ

if K = 0,
√
−K(N − 1)cotanh(θ

√
−K
N−1) if K < 0.

When K = 0, these estimates simplify to

e(x̄) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N−1
2−N

h2
(x̄)

l(x̄)−h(x̄) if 1 < N < 2,

1
2

h2
(x̄)

l(x̄)−h(x̄)(
1

1+
√

1+( 1
2

h2(x̄)
l(x̄)−h(x̄))

2 + log
1+
√

1+( 1
2

h2(x̄)
l(x̄)−h(x̄))

2

1
2

h2(x̄)
l(x̄)−h(x̄)

) if N = 2,

2 N−1
N−2(

N−1
N

hN
(x̄)

l(x̄)−h(x̄))
1

N−1 if N > 2.

3 Universal Covers of RCD(0,N) Spaces

In this section, we will discuss the properties and natural metric measure structure
of the universal cover of an RCD(0,N) space. Let X be a topological space; then a
covering P∶ X̃ → X is called the universal cover if X̃ is simply connected. It is well
known that any other covering of X can itself be covered by the universal cover.
For existence of the universal cover we only need to require very mild topological

conditions. In fact, if X is connected, locally path-wise connected and semi-locally
simply connected, then a universal cover of X exists (see [4] for details).

In this paper we will need to be able to apply the excess estimates (2.1) (see also
[12]) to a universal covering of an RCD(0,N) metric measure space X. Hence, we
will need a canonical metric measure structure on a universal covering of a metric
measure space X.

Let (X , dX ,m) be ametricmeasure space and let P∶ X̃ → X be a universal covering.

Canonical Metric, d̃X̃ , on X̃

For a pair of points x̃ , ỹ ∈ X̃, themetric d̃X̃ (distance) is deûned as

d̃X̃(x̃ , ỹ) ∶= inf{Length(γ̃) ∣ γ̃ is continuous and connects x̃ to ỹ} .

Notice that Length(γ̃) is computed using the length structure of the base space X and
the fact that X̃ is locally homeomorphic to X. _e covering map P∶ (X̃ , d̃X̃)→ (X , d)
becomes a local isometry and 1-Lipschitz map.
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Remark 3.1 Notice that if x̃ and ỹ are two diòerent points in X̃, that both project
to p ∈ X,_en d̃X̃(x̃ , ỹ) > 0, while obviously dX(p, p) = 0. _is is due to the fact that
x̃ and ỹ are on diòerent sheets of the covering. To make this more clear, suppose γ̃ is a
curve joining x̃ and ỹ. _en γ ∶= P ○ γ̃ is a closed curvewhose image does not entirely
lie inside Brp(p) for some rp > 0 small enough (dues to the deûnition of a covering
space). _is means that

Length(γ̃) ≥ Length(γ) > 2rp > 0.

Canonical Measure, m̃, on X̃

Again using the properties of a covering map, one can canonically obtain a measure
m̃ on the covering space, X̃. Let Ã ⊂ X̃ be any subset such that the restriction of
the covering map P to Ã is an isometry to P(Ã). Deûne m̃(Ã) ∶= m(P(Ã)) and then
extend thismeasure to the σ−algebra generated by all such sets,which in turn is equal
to the Borel σ−algebra of X̃ (for details see [4]).

_emeasure m̃ can also be deûned in the following equivalent manner:

m̃(Ũ) ∶= sup{∑m(P(Ã j)) ∣ Ũ = ⊔Ã j} .

_eorem 3.2 Suppose that X is a non-branching geodesic space and assume that the
universal cover X̃ exists. _en (X̃ , d̃X̃ , m̃) is an RCD(0,N) spacewhenever (X , dX ,m)
is an RCD(0,N) space.

Proof Since (X , d ,m) is an RCD(0,N) space, it is also an RCD∗(0,N) space.
Namely, it is inûnitesimally Hilbertian and a CD∗(0,N) space. It is known that in
non-branching spaces, the RCD∗(0,N) condition is a local property. Also it is obvi-
ous that X̃ is also non-branching. Now, by the construction of d̃X̃ and m̃, (X̃ , d̃X̃ , m̃)
is also an RCD∗(0,N) space. Since CD∗(0,N) and CD(0,N) are equivalent to each
other, (X̃ , d̃X̃ , m̃) is an RCD(0,N) space.

4 Half Way Lemma and Uniform Cut Lemma in a Non-Smooth
Setting

4.1 Half Way Lemma

From now on,we always assume that ametric space (X , d) is connected, locally path-
wise connected, and semi-locally simply connected. Accordingly the existence of the
universal cover is guaranteed.

Lemma 4.1 (Halfway Lemma) Let (X , d) be a connected and geodesic metric
space. Assume furthermore that X is proper. _en there exists an ordered set of inde-
pendent generators {g1 , g2 , . . .} having minimal representative geodesic loops γk with
Length(γk) = dk such that

(4.1) dX(γk(0), γk(
dk

2
)) = dk

2
,
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and if π1(X , x0) is inûnitely generated, one obtains a sequence of such generators.

Proof Firstwe note that X̃ is proper if and only if so is X. Now ûx x0 ∈ X and let x̃0 ∈
X̃ be a li� of x0 to X̃. Obviously, for any non-trivial element g ∈ G = π1(X , x0), one
has d̃X̃(x̃0 , g x̃0) > 0. Furthermore, the semi-locally simply connectedness and the
properness of X guarantee the positivity of a minimal value of d̃X̃(x̃0 , g x̃0). Indeed,
suppose there exists a sequence {g i} ⊂ π1(X , x0) such that d̃X̃(x̃0 , g i x̃0) → 0. _is
means that for any neighbourhoodU of x0, there exists a large number J such that g j ∈
π1(U , x0) for any j ≥ J. Since each g j is not a trivial element even in π1(X , x0), the
homomorphisminduced by the inclusionmap ι∶U → X isnot trivial. _is contradicts
the deûnition of semi-locally simply connected.

SinceG is discrete, there exists an element g1 ∈ G attaining theminimum. Nowwe
can proceed by induction just as in [24], and we obtain (4.1) as in [24].

Remark 4.2 An RCD(0,N) space X is proper. However, it is not known to the
authors whether an RCD(0,N) is also automatically semi-locally simply connected
or not.

4.2 Uniform Cut Lemma

To generalize theuniform cut lemmaof [24] toour setting,weneed somenon-branch-
ing assumptions on RCD(0,N) space X. Moreover, we need to modify the value of
SN .
Deûne the universal constant SN by

(4.2) SN =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(9 N−1
2−N + 4)−1 if 1 < N < 2,

1/13 if N = 2,
(4 + 2 ⋅ 3N( N−1

N−2)
N−1 N−1

N )−1 if N > 2.

We deûne the set of cut locus for x ∈ X, roughly-speaking, as the set of points at
which geodesics emanating from x stop being minimizing.

Deûnition 4.3 (Cut Locus) Let (X , d) be a complete geodesicmetric space. For a
given point x ∈ X, we deûne the set of cut locus at x by

Cx ∶= { y ∈ X; ∄z ∈ X s.t. d(x , z) = d(x , y) + d(y, z)} .

An element in Cx is called a cut point. For Riemannian manifolds, they coincidewith
the ordinal cut locus.

Remark 4.4 Since our space is a geodesic space, it is straightforward to see that
the notion of cut locus as deûned here coincides with the minimal cut locus as de-
ûned in [23]. _e interested reader should consult [23] for a thorough discussion of
conjugate and cut points in length spaces.

Lemma 4.5 (Uniform Cut Lemma for N ≠ 2) Let (X , d ,m) be a non-branching
RCD(0,N) space with N ≠ 2. Let γ be a non-contractible geodesic loop based at a
point x0 ∈ X with Length(γ) = L. Suppose the following are true:
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(i) γ has the shortest length among all loops homotopic to γ;
(ii) γ is minimal on both intervals [0, L

2 ] and [ L
2 , L].

_en for any x ∈ ∂B(x0 , RL) with L ≥ 1
2 + SN , one has

dX(x , γ(
L
2
)) ≥ (R − 1

2
)L + 2SNL,

where SN is the universal constant deûned by (4.2).

For the sake of completeness, we outline the proof (which is similar to the one
in [24]) below.

Proof _roughout the proof we have N ≠ 2. We ûrst observe that for a geodesic
loop γ∶ [0, L]→ X based at a point x0,_ere does not exist geodesic from x0 through
γ(L/2) such that it is still minimal a�er passing through γ(L/2). On the contrary,
suppose that there exists such geodesic η∶ [0, L/2 + є] → X. Both curves η(L/2 →
L/2 + є) ○ γ(0 → L/2) and η(L/2 → L/2 + є) ○ γ(L → L/2) are minimal geodesics
and this contradicts the non-branching property of X. _e above claim means that
γ(L/2) ∈ Cx0 and d(x , γ(L/2)) > L/2 + RL for any x ∈ ∂B(x0 , RL), R > 1/2.
For R0 = 1

2 + L, we will examine the proof of a uniform cut lemma in our setting.
Suppose there exists a point x ∈ ∂B(x0 , R0L) with

dX(x , γ(
L
2
)) =∶ A < 3SNL.

Let β∶ [0,A] → X be aminimal geodesic from γ( L
2 ) to x. Consider the triangle in X̃

with vertices x̃0 , g x̃0, and x̃ and with geodesic legs given by the li�s γ̃ from x̃0 to g x̃0
and β̃(0→ A) ○ γ̃(0→ L

2 ) from x̃0 to x̃. Let

l̃0 ∶= d̃X̃(x̃ , x̃0) ≥ dX(x , x0) = R0L,

l̃1 ∶= d̃X̃(x̃ , g x̃0) ≥ dX(x , x0) = R0L.
Now on one hand, the excess at x̃ satisûes

e(x̃) ∶= l̃0 + l̃1 − d̃X̃(x̃0 , g x̃0) ≥ 2R0L − L = 2SNL,
so we can apply the non-smooth excess estimates. And on the other hand, since
SN < 1

8 , one observes that

l(x̃) − h(x̃) ≥ ( 1
2
+ SN)L − 3SNL = L( 1

2
− 2SN) > L

4
.

Now, applying the Abresch–Gromoll type excess estimates for RCD(0,N) spaces
(see [12]) yields

2SNL ≤ e(x̃) <
⎧⎪⎪⎪⎨⎪⎪⎪⎩

N−1
2−N

(3SN L)2

L( 1
2−2SN)

if 1 < N < 2,

2 N−1
N−2(

N−1
N

(3SN L)N

L( 1
2−2SN)

)
1

N−1 if N > 2.

_e above inequalities simplify to
⎧⎪⎪⎨⎪⎪⎩

SN > (9 N−1
2−N + 4)−1 if 1 < N < 2,

SN > (2 ⋅ 3N N−1
N ( N−1

N−2)
N−1 + 4)−1 if N > 2.
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Both inequalities contradict the deûnition of SN .
For R ≥ R0, take y ∈ ∂B(x0 , R0L) ∩ γ(0→ L

2 ) and compute

dX(x , γ(
L
2
)) = dX(x , y) + dX( y, γ(

L
2
))

≥ (RL − R0L) + 3SNL = (R − 1
2
)L + 2SNL.

Lemma 4.6 (Uniform Cut Lemma for N = 2) Let (X , d ,m) be a non-branching
RCD(0, 2) space. Let γ be a non-contractible geodesic loop based at a point x0 ∈ X
with Length(γ) = L ≥ 1352. Suppose the following are true:
(i) γ has the shortest length among all loops homotopic to γ.
(ii) γ is minimal on both intervals [0, L

2 ] and [ L
2 , L].

_en for any x ∈ ∂B(x0 , RL) with R ≥ 1
2 + S2, one has

dX(x , γ(
L
2
)) ≥ (R − 1

2
)L + 2S2L,

where S2 is the universal constant deûned in (4.2).

Proof In the same way as in the proof of Lemma 4.5, we have

2S2L(4.3)
≤ e(x̃)

≤ 1
2

h2(x̃)
l(x̃) − h(x̃)

⎛
⎝

1

1 +
√

1 + ( 1
2

h2(x̃)
l(x̃)−h(x̃))

2
+ log

1 +
√

1 + ( 1
2

h2(x̃)
l(x̃)−h(x̃))

2

1
2

h2(x̃)
l(x̃)−h(x̃)

⎞
⎠

≤ 1
2

h2(x̃)
l(x̃) − h(x̃)

⎛
⎝

1
2
+

2 + 1
2

h2
(x̃)

l(x̃)−h(x̃)
1
2

h2(x̃)
l(x̃)−h(x̃)

⎞
⎠

= 1
2

h2(x̃)
l(x̃) − h(x̃)

⎛
⎝

3
2
+ 4 l(x̃) − h(x̃)

h2(x̃)
⎞
⎠
.

Let t0 ∈ [0, 1] be a point satisfying h(x̃) = d̃(x̃ , γ̃(t0L)). Without loss of generality,
we can assume that t0 ∈ [0, 1/2]. _en one can bound h(x̃) from below as

h(x̃) ≥ d(x , γ(t0L)) ≥ d(x , γ(0)) − d(γ(0), γ(t0L)) ≥ S2L.

On the other hand, we have

l(x̃) − h(x̃) ≤ d̃(x̃ , g x̃0) − d̃( x̃ , γ̃(t0L)) ≤ d̃( γ̃(L), γ̃(t0L)) = (1 − t0)L;

therefore,

(4.4) l(x̃) − h(x̃)
h2(x̃) ≤ (1 − t0)L

S2
2L2 ≤ 1

S2
2L

≤ 1
1

169 ⋅ 1352
= 1
8
.
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Combining the two inequalities (4.3) and (4.4), one obtains

2S2L ≤ 1
2

h2(x̃)
l(x̃) − h(x̃)(

3
2
+ 4 l(x̃) − h(x̃)

h2(x̃) ) < 1
2

(3S2L)2

L( 1
2 − 2S2)

( 3
2
+ 4 ⋅ 1

8
) = 2 9S2

2L
1 − 4S2

,

or

1 < 9S2

1 − 4S2
.

_is is a contradiction to the deûnition of S2.

Remark 4.7 As we see in Lemma 4.6, when N = 2, the uniform cut lemma holds
only for loops whose lengths are suõciently large (L > 1352). But this is enough for
us since in the proof of_eorem 1.1we have a sequence of loops, the lengths ofwhich
are diverging to∞.

Remark 4.8 It is known that an RCD(0,N) spaces are strongly CD(0,N), which
implies that they are essentially non-branching (see [21] for details), but this is not
strong enough to get a topological result as in these notes.

5 Small Diameter Theorem

In this section we prove_eorem 1.1 and Corollary 1.4

Proof of_eorem 1.1 Now that we have all the essential ingredients (HalfWay and
Uniform Cut Lemmas), the proof the main theorem is essentially the same as the
proof of the small diameter growth theorem in [24]. For the sake of completeness, we
will repeat the proof below.

Suppose π1(X , x0) is inûnitely generated. Construct the ordered set of inde-
pendent generators g1 , g2 , . . . as in Lemma 4.1 with minimal representative loops
γ1 , γ2 , . . . (resp.).
First observe that dk ∶= Length(γk) diverges to inûnity, since otherwise we would

have, for some large R, π1(X , x0) = π1(B(x0 , R), x0) , which is ûnite (since B(x0 , R)
is compact), which is a contradiction.

Let {xk} be a sequence with xk ∈ ∂B(x0 , ( 1
2 + SN)dk) and let βk ∶ I → X be the

minimal geodesic from xk to x0. From the uniform cut lemma (Lemma 4.5) we have

dX(xk , γk(
dk

2
)) ≥ 3SNdk .

Now take the points yk ∈ ∂B(x0 , dk2 ) ∩ βk(I); then, by the triangle inequality, we
get

dX( yk , γk(
dk

2
)) ≥ 2SNdk .

Hence,

lim sup diam ∂(B(p, r))
r

≥ lim sup
dX( yk , γk( dk2 ))

dk
2

≥ 4SN ,
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which is a contradiction.

Proof of Corollary 1.4 Let X be a metric space with non-negative curvature in the
sense of Alexandrov and with small linear diameter growth. It is well known that
X is non-branching (for example see [5]). From Petrunin [20], we know that X is a
CD(0,N) space and inûnitesimal Hilbertianity follows from Kuwae–Machigashira–
Shioya [13]. _e local (Lipschitz) contractibility of X follows from Mitsuishi–Yama-
guchi [18] and Perelman [19]. So X satisûes all the hypotheses of_eorem 1.1.

Example 5.1 Let (M i , d i , v i , p i) be a sequence of pointed complete N-dimensional
Riemannian manifolds with nonnegative Ricci curvature. Assume that there exists a
positive (small) constant є > 0 such that for any η > 0, there exists a large number
R > 0, possibly depending on η, such that inequalities

diam ∂(B(p i , r))
r

< 4SN − є + η

hold for any i ∈ N, any r > R, and furthermore (M i , d i , v i , p i) converges to a pointed
metricmeasure space (X , d ,m, p) in the pointed Gromov-Hausdorò sense. Suppose
(X , d ,m) is non-branching; then X has a ûnitely generated fundamental group. _e
proof is quite simple, but for the reader’s convenience,we give a rough proof below. By
the stability result for RCD(0,N) condition, (X , d ,m) is also an RCD(0,N) space.
Let η > 0 be a positive constant with η < є/4. For a given R > 0, we are able to ûnd a
large number J such that for any points x , y ∈ BR(p) there exist points x j , y j ∈ BR(p j)
with ∣d(x , y) − d(x j , y j)∣ ≤ η for any j ≥ J. _is implies that

lim sup
r→∞

diam ∂B (p, r)
r

< 4SN .
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