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Geometric singularities and a flow tangent to the Ricci flow

LASHI BANDARA, SAJJAD LAKZIAN AND MICHAEL MUNN

Abstract. We consider a geometric flow introduced by Gigli and Mantegazza
which, in the case of a smooth compact manifold with a smooth metric, is tangen-
tial to the Ricci flow almost-everywhere along geodesics. To study spaces with
geometric singularities, we consider this flow in the context of a smooth manifold
with a rough metric possessing a sufficiently regular heat kernel. On an appropri-
ate non-singular open region, we provide a family of metric tensors evolving in
time and provide a regularity theory for this flow in terms of the regularity of the
heat kernel.

When the rough metric induces a metric measure space satisfying a Rieman-
nian curvature dimension condition, we demonstrate that the distance induced by
the flow is identical to the evolving distance metric defined by Gigli and Man-
tegazza on appropriate admissible points. Consequently, we demonstrate that a
smooth compact manifold with a finite number of geometric conical singularities
remains a smooth manifold with a smooth metric away from the cone points for
all future times. Moreover, we show that the distance induced by the evolving
metric tensor agrees with the flow of RCD(K , N ) spaces defined by Gigli and
Mantegazza.
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Abstract. We consider a geometric flow introduced by Gigli and Mantegazza
which, in the case of smooth compact manifolds with smooth metrics, is tangen-
tial to the Ricci flow almost-everywhere along geodesics. To study spaces with
geometric singularities, we consider this flow in the context of smooth manifolds
with rough metrics with su�ciently regular heat kernels. On an appropriate non-
singular open region, we provide a family of metric tensors evolving in time and
provide a regularity theory for this flow in terms of the regularity of the heat
kernel.

When the rough metric induces a metric measure space satisfying a Riemannian
Curvature Dimension condition, we demonstrate that the distance induced by the
flow is identical to the evolving distance metric defined by Gigli and Mantegazza
on appropriate admissible points. Consequently, we demonstrate that a smooth
compact manifold with a finite number of geometric conical singularities remains
a smooth manifold with a smooth metric away from the cone points for all future
times. Moreover, we show that the distance induced by the evolving metric tensor
agrees with the flow of RCD(K,N) spaces defined by Gigli-Mantegazza.
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1. Introduction

Nearly ten years ago, using the tools of optimal transportation, Lott-Villani [19] and
Sturm [27, 28] extended the notion of lower Ricci curvature bounds to the setting
of general metric measure spaces. Among other things, they showed that this so-
called curvature-dimension condition, denoted CD(K,N) for K 2 R, N 2 [1,1], is
stable under measured Gromov-Hausdor↵ limits and consistent with the notion of
Ricci curvature lower bounds for Riemannian manifolds. That is to say, for smooth
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Riemannian manifolds, the CD(K,N) condition is equivalent to having the Ricci
curvature tensor bounded below by K and dimension of the manifold at most N .
In a similar way, for a metric measure space (X , d, µ), the CD(K,N) condition is
understood to say that X has N -dimensional Ricci curvature bounded below by K.

Although CD(K,N) spaces enjoy many favourable properties, Villani shows in [29]
that such spaces also allow for Finsler structures. This is a somewhat unsettling fact
as it is known that Finsler manifolds cannot arise as the Gromov-Hausdor↵ limit
of Riemannian manifolds with lower Ricci curvature bounds. Even more so, clas-
sical results such as the Cheeger-Gromoll splitting theorem were known to fail for
general metric measure spaces which are merely CD(K,N). In order to retain these
nice properties while also ruling out Finsler geometries, Ambrosio-Gigli-Savaré intro-
duced a further refined version of the curvature-dimension bound requiring that in
addition, the Sobolev space W1,2(X ) is a Hilbert space. Combining this condition of
infinitesimally Hilbertian structure with the classical curvature dimension condition,
they define the Riemannian Curvature Dimension condition, denoted RCD(K,N).

In recent years there has been an increased interest in better understanding the
fine geometric and analytic consequences of this Riemannian curvature dimension
condition. There has been a great deal of progress in this direction and a number
of very deep results describing the structure of these spaces. See, for example,
recent work of Ambrosio, Cavalletti, Gigli, Mondino, Naber, Rajala, Savaré, Sturm
in [2, 3, 8, 13, 11, 14, 21]. We emphasise that this list is by no means exhaustive,
and encourage the reader to consult the references within.

The starting point of our considerations is the paper [13] by Gigli and Mantegazza,
where they define a geometric flow for spaces that are possibly singular. There,
the authors consider a compact RCD(K,N) space (X , d, µ) and define a family of
evolving distance metrics d

t

for positive time. They build this via the heat flow of d
and µ inWasserstein space, the space of probability measures on X with the so-called
Wasserstein metric. The essential feature of this flow is when the triple (X , d, µ)
arises from a smooth compact manifold (M, g). In this setting, the evolution d

t

is
given by an evolving smooth metric tensor which satisfies

@
t

g(�̇(s), �̇(s))|
t=0

= �2Ric
g

(�̇(s), �̇(s)),

for almost-every s 2 [0, 1] along g-geodesics �. That is, g
t

is tangential to the Ricci
flow in this weak sense. This work of Gigli-Mantegazza gives one direction in which
one could possibly define a Ricci flow for general metric measure spaces for all t > 0.

The latter correspondence is obtained by writing an evolving metric tensor via a
partial di↵erential equation. First, at each t > 0, x 2 M and v 2 T

x

M, they
consider the continuity equation

(CE)

� div
g

(⇢g

t

(x, y)r'
t,x,v

(y)) = (d
x

⇢g

t

(x, y))(v)ˆ
M
'
t,x,v

(y) dµ
g

(y) = 0.
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For smooth metrics, the existence and regularity of solutions to this flow are imme-
diate and they define a smooth family of metrics evolving in time by

(GM) g
t

(u, v)(x) =

ˆ
M

g(r'
t,x,u

(y),r'
t,x,v

(y)) ⇢g

t

(x, y) dµ
g

(y).

While the formulation of this flow for RCD(K,N) spaces gives the existence of a
time evolving distance metric for a possible singular space, it reveals little regularity
information in positive time. On the other hand, the evolving metric tensor is only
specified when both the initial metric and underlying manifold are smooth.

One of the motivating questions of the current paper is to better understand the
behaviour of this flow on manifolds with geometric singularities and hence, the
question of regularity will be a primary focus. Since there are few tools in the setting
of RCD(K,N) spaces that are su�ciently mature to extract regularity information,
we restrict ourselves exclusively to compact manifolds that are smooth, by which we
assume only that they admit a smooth di↵erential structure. While this may seem a
potentially severe restriction, we vindicate ourselves by allowing for the metric tensor
to be rough, i.e., a symmetric, positive-definite, (2, 0)-tensor field with measurable
coe�cients. Rough metrics and their salient features are discussed in §2.1.

Such metrics allow a wide class of phenomena, so large that such a metric may not
even induce a length structure, only an n-dimensional measure. Moreover, they may
induce spaces that are not RCD. However, this potentially outrageous behaviour is
redeemed by the fact that they are able to capture a wide class of geometric singu-
larities, including Lipschitz transformations of C1 geometries, conical singularities,
and Euclidean boxes. These objects are considered in §3.2.

Our primary concern is when a metric exhibits singular behaviour on some closed
subset S 6= M, but has good regularity properties on the open set M \ S. This
is indeed the case for a Euclidean box, or a smooth compact manifold with finite
number of geometric conical singularities. In this situation, away from the singular
part, we are able to provide a metric tensor g

t

. We say that two points x, y 2 M\S

are g
t

-admissible if for any absolutely continuous curve � : I ! M connecting these
points, there is another absolutely continuous curve �0 : I ! M between x and y
with length (measured via d

t

) less than � and for which �0(s) 2 M\ S for almost-
every s. For such a pair of points, we assert that the distance d

t

(x, y), given by the
RCD(K,N)-flow of Gigli and Mantegazza, is induced by the metric tensor g

t

. The
following is a more precise showcasing of our main theorem. It is proved in §7.

Theorem 1.1. Let M be a smooth, compact manifold with rough metric g that
induces a distance metric d

g

. Moreover, suppose there exists K 2 R and N > 0
such that (M, d

g

, µ
g

) 2 RCD(K,N). If S 6= M is a closed set and g 2 Ck(M\ S),
there exists a family of metrics g

t

2 Ck�1,1 on M\S evolving according to (GM) on
M\ S. For two points x, y 2 M that are g

t

-admissible, the distance d
t

(x, y) given
by the RCD(K,N) Gigli-Mantegazza flow is induced by g

t

.

The divergence form structure is a quintessential feature that allows for the analysis
of the defining continuity equation (CE). In the compact case, it turns out that near
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every rough metric g, there is a smooth metric g̃ in a suitable L1-sense. Coupling
this with the divergence structure, we are able to perturb this problem to the study
of a divergence form operator with bounded, measurable coe�cients on g̃ of the form

� div
g̃

⇢g

t

(x, )B✓r'
t,x,v

= ✓d
x

(⇢g

t

(x, · ))(v),

where B is a bounded, measurable (1, 1)-tensor transforming g̃ to g and ✓ the
Raydon-Nikodym derivative of the two induced measures µ

g̃

and µ
g

.

This trick of “hiding” singularities in an operator has its origins to the investigations
of boundary value problems with low regularity boundary. For us, this philosophy
has a geometric reincarnation arising from investigations of the Kato square root
problem on manifolds, with its origins in a seminal paper [4] by Axelsson, Keith and
McIntosh and more recently by Morris in [22], and Bandara and McIntosh in [6].

In §4, we study the existence and regularity of solutions to such continuity equations
by using spectral methods and PDE tools. We further emphasise that such equations
allow for a certain disintegration - that is, at each point x, we solve a di↵erential
equation in the y variable. Eventually, we are concerned with objects involving an
integration in y, and hence, we are able to allow weak solutions in y while being able
to prove stronger regularity results in x.

While the reduction of a nonlinear problem to a pointwise linear one is a tremendous
boon to the analysis that we conduct in this paper, there is a price to pay. The
equation (CE) is nonlinear in x, and this nonlinear behaviour requires the analysis
in x of the family of operators

x 7! div
g̃

⇢g

t

(x, · )B✓r.

This is not as significant a disadvantage as one initially anticipates as this opens up
the possibility to attacking regularity questions by the means of operator theory.

One of the main points of this paper is to illustrate how the regularity properties
of the flow (GM) relate to the regularity properties of the heat kernel. Theorem
1.1 allows for the possibility of the evolving metric to become less regular than the
original metric on the non-singular subset. An inspection of the continuity equation
(CE) shows that the solution at a point x depends on sets of full measure potentially
far away from this point. Thus, it is possible that singularities may resolve from
smoothing properties emerging from the heat kernel. However, it is also possible that
potentially unruly behaviour somewhere in heat kernel forces the flow to introduce
additional singularities. That being said, we show that for k � 1, Ck metrics will
continue to be Ck under the flow. We discuss these results and surrounding issues
in greater depth in §3.
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2. Geometric singularities

Throughout this paper, by the term geometric singularity, we shall mean singularities
that arise in the metric g of a smooth manifold M. We allow such singularities to
be a lack of di↵erentiability or even the lack of continuity.

To emphasise this point, we contrast this to pure topological singularities, which are
singularities that live in the topology and cannot be smoothed and transferred into
the metric.

Throughout this paper, we let M to be a smooth manifold (possibly non-compact)
of dimension dimM = n. By this, we mean a second countable, Hausdor↵ space
that is locally Euclidean, with the transition maps being smooth.

On an open subset ⌦ ⇢ M, we write Ck,↵(⌦) (k � 0 and ↵ 2 [0, 1]) to mean k-times
continuously di↵erentiable functions bounded locally in coordinate patches inside ⌦,
and where the k-th partial derivatives are ↵-Hölder continuous locally. We write
Ck(⌦) instead of Ck,0(⌦).

Let T

(p,q)

M denote the tensors of covariant rank p and contravariant rank q. We
write T⇤

M = T

(1,0)

M and TM = T

(0,1)

M, the cotangent and tangent bundles
respectively. The bundle of di↵erentiable k-forms are given by⌦k

M and the exterior
algebra is given by ⌦M = �

n

k=0

⌦k

M, where M ⇥ R = ⌦0

M (the bundle of
functions), and T⇤

M = ⌦1

M.

The di↵erentiable structure of the smooth manifold a↵ords us with a di↵erential
operator d : C1(⌦k

M) ! C1(⌦k+1

M). Indeed, this di↵erential operator is depen-
dent on the di↵erentiable structure we associate to the manifold. We remark on this
fact since, in dimensions higher than 4, there are homeomorphic di↵erentiable struc-
tures that are not di↵eomorphic (cf. [20] by Milnor and [10] by Freedman). From
this point onward , we fix a di↵erentiable structure on M. We shall only exercise
interest in the case of k = 0 where d : C1(M) ! C1(T⇤

M) and sometimes use the
notation r to denote d.

We emphasise that a smooth manifold also a↵ords us with a measure structure.
We say that a set A ⇢ M is measurable if for any chart ( , U) with U \ A 6= ?,
we obtain that  (U \ A) ⇢ Rn is Lebesgue measurable. By second countability,
this quantification can be made countable. By writing �(T (p,q)

M) we denote the
sections of the vector bundle T

(p,q)

M with measurable coe�cients.

2.1. Rough metrics. In connection with investigating the geometric invariances of
the Kato square root problem, Bandara introduced a notion of a rough metric in [5].
This notion is of fundamental importance to the rest of this paper and therefore,
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in this sub-section, we will describe some of the important features of such metrics.
We do not assume that M is compact until later in this section.

Let us first recall the definition of a rough metric.

Definition 2.1. Let g 2 �(T (2,0)

M) be symmetric. Suppose that for each x 2 M,
there exists some chart ( , U) and a constant C � 1 (dependent on U), such that,
for y-a.e. in U ,

C�1

|u|
 

⇤
�(y)

 |u|
g(y)

 C|u|
 

⇤
�(y)

,

where u 2 T
y

M, |u|2
g(y)

= g(u, u) and  ⇤� is the pullback of the Euclidean metric
inside  (U) ⇢ Rn. Such a chart is said to satisfy the local comparability condition.

It is easy to see that by taking U to be the pullback of a Euclidean ball contained
in a chart near x, every Ck,↵ metric (for k � 0 and ↵ 2 [0, 1]) is a rough metric.

Two rough metrics g and g̃ are said to be C-close (for C � 1) if

C�1

|u|
g(x)

 |u|
g̃(x)

 C|u|
g(x)

for almost-every x 2 M. If we assume that M is compact, then it is easy to see
that for any rough metric g, there exists a constant C � 1 and a smooth metric g̃
such that g and g̃ are C-close. Two continuous metrics are C-close if the C-close
condition above holds everywhere. Moreover, we note the following. Its proof is
given in Proposition 3.14 in [5].

Proposition 2.2. Let g and g̃ be two rough metrics that are C-close. Then, there
exists B 2 �(T⇤

M ⌦ TM) such that it is symmetric, almost-everywhere positive,
invertible, and

g̃
x

(B(x)u, v) = g
x

(u, v)

for almost-every x 2 M. Furthermore, for almost-every x 2 M,

C�2

|u|
g̃(x)

 |B(x)u|
g̃(x)

 C2

|u|
g̃(x)

,

and the same inequality holds with g̃ and g interchanged. If g̃ 2 Ck and g 2 Cl (with
k, l � 0), then the properties of B are valid for all x 2 M and B 2 Cmin{k,l}(T⇤

M⌦

TM).

A rough metric always induces a measure described by the expression

dµ
g

(x) =
p

det(gij(x)) dL (x)

inside a locally comparable chart. The well-definedness of this expression is verified
just as in the case of a Ck,↵ metric. This measure can easily be proven to be Borel and
finite on compact sets. The notion of measurable which we have defined agrees with
the notion of µ

g

-measurable obtained via a rough metric. Moreover, the following
holds for two C-close metrics.

Proposition 2.3. Let g and g̃ be C-close for some C � 1. Then, the measure
dµ

g

(x) =
p

detB(x) dµ
g̃

(x) for x-a.e., and C�n

2 µ
g

 µ
g̃

 C
n

2 µ
g

. Moreover, if g̃ is
continuous, then the measure µ

g

is Radon.
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Proof. The first part of the statement is proved as Proposition 3.16 [5]. To prove
that µ

g

is Radon, so that µ
g̃

 µ
g

 µ
g̃

. Now, since µ
g̃

is inner-regular, for a Borel
B ⇢ M and every " > 0 there exists K

"

⇢ B such that µ
g̃

(B) � µ
g̃

(K
"

)  ". Now,
note that

µ
g

(B) � µ
g

(K
"

)  C
n

2 µ
g̃

(B) � C�n

2 µ
g̃

(K
"

)  C 0µ
g̃

(B) � µ
g̃

(K
"

)  C 0",

where C 0 = max
�

C
n

2 , C�n

2

 

. Thus, µ
g

(B) = sup
KbB

µ
g

(K). ⇤

We remark that throughout the paper, when we say that (M, g) induces a length
structure, we mean that between any two points x, y 2 M there exists a di↵erentiable
curve � : I ! M with �(0) = x, �(1) = y such that

0 <

ˆ
I

|�̇(t)|
g(�(t))

< 1.

Then, the induced distance d
g

(x, y) is simply given as in the smooth case by taking
an infimum over all curves between such points.

2.2. L1-metrics and metrics of divergence form operators. The goal of this
subsection is to illustrate the connections of rough metrics to other low-regularity
metrics that are often mentioned in the folklore. In fact, we shall see that as a
virtue of compactness, these notions are indeed equivalent. This section is intended
as motivation for us considering rough metrics and can be safely omitted.

First, we highlight the following simple lemma.

Lemma 2.4. Suppose that g 2 �(T (2,0)

M) is symmetric and that there exists a
smooth metric h and C � 1 such that

C�1

|u|
h(x)

 |u|
g(x)

 C|u|
h(x)

for almost-every x 2 M. Then g is a rough metric.

Proof. Fix x 2 M and let ( , U) be a chart near x 2 M. Let V =  �1(B
r

( (x))),
where B

r

( (x)) ⇢ Rn is a Euclidean ball with r > 0 chosen such that B
r

( (x)) ⇢
 (U). Then, by virtue of the smoothness of h and since V is compact, we obtain
some C

V

� 1 such that

C�1

V

|u|
 

⇤
�(y)

 |u|
h(y)

 C
V

|u|
 

⇤
�(y)

,

for all y 2 V . On combining this with our hypothesis, we find that for almost-every
y 2 V ,

(C
V

C)�1

|u|
h(y)

 |u|
g(y)

 C
V

C|u|
h(y)

.

That is, g is a rough metric. ⇤

Next, we define the following notion of an L1-metric.

Definition 2.5. We say that a symmetric g 2 �(T (2,0)

M) is an L1-metric on M

if:
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(i) there exists a g�1

2 �(T (0,2)

M) inverse to g, by which we mean that writing
G = (gij(x)) and G0 = (g�1

ij

(x)), GG0 = G0G = I for almost-every x 2 M, and
(ii) there exists a smooth metric h and constants ⇤

1

,⇤
2

> 0 such that |g|
h

 ⇤
1

and |g�1

|

h

 ⇤
2

.

We prove that an L1-metric is indeed a rough metric.

Proposition 2.6. An L1-metric g is a rough metric. It is (max {⇤
1

n,⇤
2

n})-close
to a smooth metric h.

Proof. Fix x 2 M in which the inequalities in the definition of an L1 metric is valid.
Let {ei} be a frame for T

x

M so that h
ij

(x) = �
ij

. Let G = (gij(x)) Then, note that

⇤
1

� |g(x)|2
h(x)

= gij(x)gmn(x)h
im

(x)h
jn

=
X

ij

|gij|2.

Now, let u 2 T
x

M, and then

|u|2
g(x)

= g(x)(u, u) = giju
i

u
j



X

j

|

X

i

giju
i

u
j

|



X

j

 

X

i

|giju
j

|

2

!

1
2
 

X

i

|u
i

|

2

!

1
2

,

where the last inequality follows form the Cauchy Schwarz inequality. Now, by our
previous calculation, we have that |gij|2  ⇤

1

, and hence,
X

j

X

i

|giju
j

|

2

 ⇤
1

n
X

j

|u
j

|

2 = ⇤
1

n|u|2
h(x)

.

That is, |u|
g(x)



p

⇤
1

n|u|
h(x)

. Applying this with g�1 in place of g and h�1 in place
of h, we further obtain that |u|

g

�1
(x)



p

⇤
1

n|u|
h

�1
(x)

.

Now, we note that G̃ = (g�1

ij

(x)) = G�1. Since G is symmetric, let G = PDP tr, its
eigenvalue decomposition. Indeed, D = diag(�

i

) and �
i

> 0 since G is invertible.
On letting D�1 = diag(�

i

), note that �
n

= �
1

and we have that �
n

 ⇤
2

n, which
means that �

1



1

⇤2n
. So, now

|u|2
g(x)

= utrGu = utrPDP tru = (P tru)
tr

D(P tru) = ũtrDũ

=
X

i

�
i

|ũ
i

| � min {�
i

}

X

i

|ũ
i

| �

1

⇤
2

n
|P tru| =

1

⇤
2

n
|u|2,

since P is an orthonormal matrix. That is, we have shown that for almost-every
x 2 M, and every u 2 T

x

M,

(⇤
2

n)�1

|u|
g(x)

 |u|
h(x)

 (⇤
1

n)�1

|u|
h(x)

.

Thus, by Lemma 2.4, g is a rough metric. ⇤

Another class of metrics we consider are metrics arising from coe�cients of elliptic
operators in divergence form. In particular, see the paper [25] by Salo↵-Coste, where
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the author explicitly considers this class of metrics, although he makes a qualitative
assumption that the coe�cients are smooth.

Fix some smooth metric h and let A 2 �(T (1,1)

M, h) be symmetric. Consider the
real symmetric form J

A

[u, v] = hAru,rvi
h

. In order for this to define an elliptic
operator, the natural assumption is to ask that there exist 

1

,
2

> 0 such that

h(Au, u)(x) � 
1

|u|2
h(x)

and |A|
h(x)

 
2

,

for almost-every x 2 M. For the sake of nomenclature, let us say that the coe�cients
A are elliptic if this condition is met. Under these conditions, there exists a self-
adjoint operator associated to J

A

which is L
A

u = div
h

Aru. Such operators have
been amply studied in the literature.

Let us now define a metric associated to elliptic coe�cients A by writing g(u, v) =
h(Au, v). Then, we have the following proposition.

Proposition 2.7. A metric g induced from elliptic coe�cients A via a smooth metric
h is a rough metric. The metric g is (max {

1

,
2

})-close to h.

Proof. By virtue of the fact that A are elliptic coe�cients, we immediately obtain
that for almost-every x 2 M, |u|2

g(x)

= h(Au, u) � 2
1

|u|2
h(x)

for every u 2 T
x

M.

For the upper bound, fix an x where the ellipticity inequality is valid, and choose a
frame so that let h

ij

(x) = �
ij

. Then, we have that |A|2
h(x)

=
P

ij

|Ai

j

|

2. Then,

|u|2
g(x)

= h
x

(Au, u)|Au|
h(x)

|u|
h(x)

.

Now,

|Au|2
h(x)

=
X

j

|

X

i

Ai

j

u
i

|

2



X

j

 

X

i

|Ai

j

|

2

! 

X

i

|u
i

|

2

!

 4
2

|u|2
h(x)

.

Thus, |u|2
g(x)

 2
2

|u|2
h(x)

. By invoking Lemma 2.4, we obtain that g is a rough
metric. ⇤

As a finale, on collating our results here, we present the following proposition.

Proposition 2.8. We have the following:

(i) every rough metric that is close to a smooth one is an L1 metric,
(ii) every L1 metric is a metric induced via elliptic coe�cients,
(iii) every metric induced via elliptic coe�cients is an L1 metric.

If M is compact, then all these notions are equivalent.

Proof. For (i), suppose that g is a rough metric and that it is C-close to a smooth
metric h. Then, by Proposition 2.2, we obtain a B 2 �(T (1,1)

M) so that g(u, v) =
h(Bu, v) and

C�2

|u|
h(x)

 |B(x)u|
h(x)

 C2

|u|
h(x)

,
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for almost-every x. Fix an x where this inequality is valid and choose a h orthonormal
frame {e

i

} at x. Then,

|g(x)|2
h(x)

=
X

ij

|gij(x)|2 =
X

ij

|h(Be
i

, e
j

)| 
X

ij

|Be
i

|

h(x)

|e
j

|

h(x)

 n2C2.

So, |g|
h

 n2C2 almost-everywhere. Since g�1(u, v) = h�1(B�1u, v), a similar calcu-
lation shows that |g�1

|

h

�1
 n2C2.

To prove (ii), suppose that g is an L1 metric. Then, we have shown in Proposition
2.6 that it is a rough metric that is close to a smooth metric h. Hence, by Proposition
2.2, we haveB 2 �(T (1,1)

M) which can easily be checked to satisfy ellipticity. Hence,
g(u, v) = h(Bu, v), i.e., it is a metric induced by elliptic coe�cients. Then, it is a
rough metric that is C-close to a smooth one and by (i), we obtain that it is an L1

metric.

If further we assume that M is a compact manifold, then near every rough metric
g, there is a smooth metric h, and hence, by (i), we obtain that every rough metric
is L1 or equivalently, defined via elliptic coe�cients. ⇤

In particular, this proposition gives credence to the notion of a rough metric since
it is a su�ciently general notion that is able to capture the behaviour of these other
aforementioned low regularity metrics.

2.3. Lebesgue and Sobolev space theory. A more pertinent feature of rough
metrics is that they admit a Sobolev space theory. In order to make our exposition
shorter and more accessible, from here on, we assume that M is compact. First,
we note that since (M, µ

g

) is a measure space, we obtain a Lebesgue theory. Let
Lp(T (p,q)

M, g) denote the p-integrable Lebesgue spaces over the bundle of (p, q)
tensors. We write Lp(M, g) for the case that p = q = 0. We quote the following
result which is listed as Proposition 3.10 in [5].

Proposition 2.9. For a rough metric g, r
p

: C1
\ Lp(M) ! C1

\ Lp(T⇤
M) and

r

c

: C1
c

(M) ! C1
c

(T⇤
M) given by r

p

= d and r

c

= d on the respective domains
are closable, densely-defined operators.

As a consequence, we define the Sobolev spaces as function spaces by writing
W1,p(M) = D(r

p

) and W1,p

0

= D(r
c

).

Proposition 2.10. Let g and g̃ be two C-close rough metrics on a compact manifold
M. Then,

(i) whenever p 2 [1,1), Lp(T (r,s)

M, g) = Lp(T (r,s)

M, g̃) with

C�(r+s+

n

2p)
kuk

p,g̃

 kuk
p,g

 Cr+s+

n

2p
kuk

p,g̃

,

(ii) for p = 1, L1(T (r,s)

M, g) = L1(T (r,s)

M, g̃) with

C�(r+s)

kuk1,g̃

 kuk1,g

 Cr+s

kuk1,g̃

,
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(iii) the Sobolev spaces W1,p(M, g) = W1,p(M, g̃) = W1,p

0

(M, g) = W1,p

0

(M, g̃) with

C�(1+ n

2p)
kuk

W

1,p
,g̃

 kuk
W

1,p
,g

 C1+

n

2p
kuk

W

1,p
,g̃

,

(iv) the Sobolev spaces Wd,p(M, g) = Wd,p(M, g̃) with

C�(n+ n

2p)
kuk

W

d,p
,g̃

 kuk
W

d,p
,g

 Cn+

n

2p
kuk

W

d,p
,g̃

,

(v) the divergence operators satisfy div
g

= ✓�1 div
g̃

✓B.
(vi) the Laplacians satisfy �

g

= �✓�1 div
g̃

✓Br.

We emphasise (iii), which demonstrates that W1,2(M, g) = W1,2(M, g̃) for any
rough metric g, since, as we have aforementioned, compactness guarantees the exis-
tence of a smooth metric g̃ that is C-close to g.

3. Main results and applications

3.1. Existence and regularity of the flow. The broader perspective underpin-
ning our analysis in this paper is to relate the regularity of the heat kernel to the
Gigli-Mantegazza flow. Indeed, this is to be expected simply from inspection of the
main governing equation (CE) for this flow.

In §4, we consider L1-coe�cient di↵erential operators on smooth manifolds, and we
obtain solutions to more general equations similar to (CE). Furthermore, we conduct
operator theory of operators of the type x 7! div

g

!
x

r in order to define a notion of
derivative that is weak enough to account for the lack of regularity of the coe�cients
!
x

but su�ciently strong enough to be useful to demonstrate the regularity of the
the flow (GM). In §5, we prove some auxiliary facts needed to ensure that (GM)
indeed does define a Riemannian metric, and on coupling our main results from §4,
we obtain the following theorem. It is the most general geometric result that we
showcase in this paper. Its proof can be found in §5.2.

Theorem 3.1. Let M be a smooth, compact manifold and g a rough metric. Suppose
that the heat kernel (x, y) 7! ⇢g

t

(x, y) 2 C0,1(M2) and that on an open set ? 6= N ,
(x, y) 7! ⇢g

t

(x, y) 2 Ck(N 2) where k � 2. Then, for t > 0, g
t

is a Riemannian
metric on N of regularity Ck�2,1.

We remark that allowing for a Lipschitz heat kernel is neither a restriction nor is it
too general. We will see in the following section that the most important class of
objects we consider, namely when (M, g) is an RCD(K,N) space, will admit such
a heat kernel.

The reader may find it curious that, even though we assume that the heat kernel
is Ck away from the singular region, and only a single derivative of the heat kernel
appears in the source term of (CE), we are only able to assert that the resulting flow
is Ck�2,1. In a sense, it is because the global regularity of the heat kernel, which is
only Lipschitz, becomes significant in proving the continuity of the (k � 1) partial
derivatives.
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We remark that it may be possible to assert this continuity performing the operator
theory of x 7! div

g

⇢g

t

(x, · )r with greater care than we have done.

For a C1 global heat kernel, we are able to assert that the (k� 1) partial derivatives
are indeed continuous. This is the content of the following theorem. Note that, unlike
Theorem 3.1 where we assumed that the heat kernel was at least twice continuously
di↵erentiable on the non-singular part, we allow for heat kernels with only a single
derivative on the non-singular region. This theorem is an immediate consequence of
Theorem 6.3 in §6.1.

Theorem 3.2. Let M be a smooth, compact manifold and g a rough metric. Suppose
that the heat kernel (x, y) 7! ⇢g

t

(x, y) 2 C1(M2) and that on an open set ? 6= N ,
(x, y) 7! ⇢g

t

(x, y) 2 Ck(N 2) where k � 1. Then, for t > 0, g
t

is a Riemannian
metric on N of regularity Ck�1.

Typically, in an open region where the metric is Ck for k � 1, we expect the heat
kernel to improve to Ck+1. This is an immediate consequence of the fact that the
region is open, and because we can write the Laplacian via a change of coordinates as
a non-divergence form equation with Ck�1 coe�cients. We then obtain regularity via
Schauder theory. This analysis is conducted in §6.2. By considering the situation
where a rough metric improves to a Ck metric away from a closed singular set,
Theorem (3.1) yields a metric tensor away from the singular set that is of regularity
Ck�1,1. That is, the resulting flow may be more singular than the initial metric
inside such a region. However, by coupling the results of §6.2 with Theorem 3.2, we
are able to assert that the flow remains at least as regular as the initial metric.

Theorem 3.3. Let M be a smooth, compact manifold and g 2 Ck for k � 1. Then,
the flow g

t

2 Ck for each t > 0.

We emphasise that we are not providing sharp regularity information via these
theorems. That is, we are unable to assert that if the initial metric is Ck

\ Ck�1,
then the resulting flow is also Ck

\Ck�1. In fact, this may not be the case, it may be
possible that in some instances, the flow g

t

improves in regularity. These questions
are open and beyond the scope of this paper.

3.2. Applications to geometrically singular spaces. In this subsection, we con-
sider geometric applications of Theorem 3.1, particular to spaces with geometric
singularities.

As a start, we describe our notion of a geometric conical singularity. For that, let
us first describe the n-cone of radius r and height h by

C(r, h) =
n

(x, t) 2 Rn+1 : |x| =
r

h
(h� t) : t 2 [0, h]

o

.

With this notation in hand, we define the following.

Definition 3.4 (Geometric conical singularities). Let M be a smooth manifold and
g a rough metric. Let {p

1

, . . . , p
k

} ⇢ M and suppose there exists a charts ( 
i

, U
i

)
mutually disjoint such that g 2 Ck(M\ [

i

U
i

). Moreover, suppose for each i, there
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is a Lipeomorphism F
i

: U
i

! C(r
i

, h
i

) ⇢ Rn+1 which improves to a Ck+1 di↵eomor-
phism (for k � 1) on U

i

\{p
i

} and that g = F ⇤
i

h· , · iRn+1 inside U
i

. Then, we say that
(M, g) is Ck-geometry with geometric conical singularities at points {p

1

, . . . , p
k

}.

A direct consequence of Theorem 1.1 is then the following.

Corollary 3.5. Let (M, g) be a Ck-geometry for k � 1 with geometric conical
singularities at {p

1

, . . . , p
k

}. Then, the flow g
t

2 Ck�1,1 and the induced metric
coincides everywhere with the flow of the metrics d

t

for RCD(K,N) spaces defined
by Gigli-Mantegazza.

Moreover, we are able to flow the sphere with a conical pole. See §7.2 for the
construction and proof.

Corollary 3.6 (Witch’s hat sphere). Let (Sn, g
witch

) be the sphere with a cone at-
tached at the north pole. Then, the flow g

t

2 C1 and the induced metric agrees with
the flow of the metrics d

t

for RCD(K,N) spaces defined by Gigli-Mantegazza.

Also, as a consequence of Theorem 1.1, we are able to consider the n-dimensional
box in Euclidean space. Again, its proof is contained in §7.2.

Corollary 3.7. Let (B, g) be an n-box. Then, the flow g
t

2 C1 away from S, the
set of edges and corners, induces the same distance as d

t

, the RCD(K,N) Gigli-
Mantegazza flow, for g

t

-admissible points.

We remark that a shortcoming of the flow in this situation is that we have not clas-
sified the g

t

-admissible points. We do not expect this analysis to be straightforward
since it involves understanding whether the flat pieces are preserved in some way
under d

t

. However, since we have supplied a metric g
t

away from a set of measure
zero, we expect it to be possible to induce d

t

via this metric on a very large part of
the box.

4. Elliptic problems and regularity

Throughout, let us fix ? 6= N ⇢ M to be an open subset of M. To study the flow
of Gigli-Mantegazza, we study a slightly more general elliptic problem than (CE).
Let ! 2 C0,1(M2) be a function satisfying !(x, y) > 0 for all x, y 2 M. Moreover,
let x 7! !(x, · ) 2 Ck(N ) where k � 1. For convenience, we write !(x, · ) = !

x

.
Then, for ⌘ 2 L2(M) we want to solve for ' 2 W1,2(M) satisfying the equation

(F) � div
g

!
x

r' = ⌘.

In this section, we establish existence, uniqueness and regularity (in x) for this
equation.
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4.1. L1-coe�cient divergence form operators on smooth metrics. Due to
the lack of regularity of an arbitrary rough metric, we are forced to solve the the
problem (F) via perturbation at the level of the metric. Indeed, this is not a small
perturbation result, because we are not guaranteed the existence of arbitrarily close
smooth metrics to a rough metric. Instead, we will have to contend ourselves to
studying elliptic PDE of the form � divAr, where A are only bounded measurable
coe�cients defining an elliptic problem.

More precisely, throughout this subsection, we fix M to be a smooth compact man-
ifold and g̃ to be a smooth metric. Let A 2 L1(T (1,1)

M) = L1(L(T (1,0)

M))
be symmetric. That is, for almost-every x, in coordinates, A(x) can be written
as a symmetric matrix. Further, we assume that there exists  > 0 such that
hAu, ui � kuk2. That is, A is bounded below. Moreover, we quantify the L1

bound for A via assuming there exists ⇤ > 0 satisfying hAu, ui = k

p

Ak2  ⇤

Let J
A

: W1,2(M)⇥W1,2(M) ! R
+

be given by

J
A

[u, v] = hAru,rvi =

ˆ
M

g̃
x

(A(x)ru(x),rv(x)) dµ
g̃

(x).

Then, by the lower bound on A, we obtain that J
A

[u, u] � kruk2. The Lax-
Milgram theorem then yields that there exists a unique, closed, densely-defined self-
adjoint operator L

A

with domain D(L
A

) ⇢ W1,2(M) such that J
A

[u, v] = hL
A

u, vi
for u 2 D(L

A

) and v 2 W1,2(M). Moreover, since the form J
A

is real-symmetric
due to the symmetry of A, this theorem further yields that D(

p

L
A

) = W1,2(M)
and J

A

[u, v] = h

p

L
A

u,
p

L
A

vi. The uniqueness then allows us to assert that L
A

=
� div

g̃

Ar.

For the remainder of this section, we rely on some facts from the spectral theory of
sectorial and, more particularly, self-adjoint operators. We refer the reader to [16]
by Kato, [1] by Albrecht, Duong and McIntosh, [15] by Gilbarg and Trudinger and
[9] by Cowling, Doust, McIntosh and Yagi for a more detailed exposition on the
connection between PDE and spectral theory.

As a first, we establish a spectral splitting for L
A

. We recall that for u 2 L1

loc

(M)
u
B

=
�
B

u dµ
g̃

for B ⇢ M a Borel set.

Proposition 4.1. The space L2(M) = N (L
A

) �?
R(L

A

) and the operator L
A

re-
stricted to either N (L

A

) or R(L
A

) preserves each space respectively. Moreover,
N (L

A

) = N (r) and R(L
A

) =
�

u 2 W1,2(M) :
´
M

u dµ
g̃

= 0
 

.

Proof. The fact that the operator splits the space orthogonally toN (L
A

) andR(L
A

),
and that its restriction to each of these spaces preserves the respective space is a
direct consequence of the fact that L

A

is self-adjoint. See Theorem 3.8 in [9].

First, let us apply this same argument to the operator
p

L
A

, so that we obtain the

splitting L2(M) = N (
p

L
A

)�?
R(

p

L
A

). Now, fix u 2 N (
p

L
A

). Then,
p

L
A

u = 0
which implies that u 2 D(L

A

) and L
A

u =
p

L
A

(
p

L
A

u) = 0. Hence, u 2 N (L
A

).
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For the reverse inclusion, suppose that 0 6= u 2 N (L
A

). Then,
p

L
A

p

L
A

u = 0.
That is,

p

L
A

u 2 N (
p

L
A

). But since
p

L
A

preserves N (
p

L
A

), u 2 N (
p

L
A

).
Thus, N (L

A

) = N (
p

L
A

). Now, since we have that for all u 2 W1,2(M), kruk2 
k

p

L
A

uk2  ⇤kruk2, we obtain that N (r) = N (
p

L
A

) and hence, N (r) = N (L
A

).

Now, recall that (M, g̃) admits a Poincaré inequality: there exists C > 0 such that

ku� uMk  Ckruk,

for every u 2 W1,2(M). Note then that, if u 2 W1,2(M) and
´
M u dµ

g̃

= 0, then
kuk  Ckruk. Thus, if we further assume that u 2 N (r) then we obtain that
u = 0. On letting Z =

�

u 2 L2(M) :
´
M u dµ

g̃

= 0
 

, that is precisely

{0} = N (L
A

) \W1,2(M) \ Z = N (L
A

) \ Z,

since N (L
A

) ⇢ W1,2(V). Therefore, Z ⇢ N (L
A

)? = R(L
A

). For the reverse
inclusion, let u 2 R(L

A

). Then, there exists a sequence v
n

2 D(L
A

) such that
u = lim

n!1 L
A

v
n

in L2(M). Then,
ˆ
M

u dµ
g̃

=

ˆ
M

lim
n!1

L
A

v
n

· 1 dµ
g̃

= lim
n!1

hL
A

v
n

, 1i

= lim
n!1

h� div
g̃

Arv
n

, 1i = lim
n!1

hArv
n

,r(1)i = 0.

⇤

Next, we note that since L
A

preserves the spaces N (L
A

) and R(L
A

), we obtain that
the restricted operator

LR

A

= L
A

|R(L

A

)

: R(L
A

) ! R(L
A

),

and
JR

A

= J
A

|R(L

A

)\W1,2
(M)

,

with D(JR

A

) = W1,2(M) \R(L
A

).

Proposition 4.2. The operator LR

A

is a closed, densely-defined operator with asso-
ciated form JR

A

.

Proof. By definition, we obtain that D(LR

A

) = D(L
A

) \R(L
A

). Now, let DR

A

be the
operator given via the form JR

A

. We note that JR

A

is both densely-defined and closed.
Now, note that

D(DR

A

) =
n

u 2 R(L
A

) : W1,2(M) \R(R(L
A

)) 3 v 7! JR

A

[u, v] continuous
o

.

It is easy to see that D(L
A

) \R(L
A

) ⇢ D(DR

A

).

For the reverse inclusion, assume that u 2 D(DR

A

), and v 2 R(L
A

) \ W1,2(M) so
that v 7! hAru,rvi is continuous. Now, we have that R(L

A

) is dense in L2(M)
as well as in W1,2(M) = D(

p

L
A

) (by a functional calculus argument). Thus, this
continuity is valid for every v 2 W1,2(M) and hence, u 2 D(L

A

). Since we have by
assumption that u 2 R(L

A

), we have that D(DR

A

) ⇢ D(L
A

) \R(L
A

).
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It is easy to see that LR

A

= DR

A

which is a closed, densely-defined operator by the
Lax-Milgram theorem. ⇤

We compute the spectrum of L
A

via the spectrum for LR

A

.

Proposition 4.3. The spectra of the operators L
A

and LR

A

relate by:

�(L
A

) = {0} [ �(LR

A

) ⇢ {0} [ [�
1

(M, g̃),1).

Proof. Fix ⇣ 6= 0 and ⇣ 2 ⇢(LR

A

), That is, ⇣ � LR

A

: D( LR

A

) = R(L
A

) \ D(L
A

) !

R(LR

A

) is invertible. Thus, for any u 2 R(L
A

) \ D(L
A

), there exists a v 2 R(L
A

)
such that u = (⇣ � LR

A

)�1v or equivalently, v = (⇣ � LR

A

)u. But we have that
LR

A

= L
A

|R(L

A

)\D(L

A

)

and therefore, we obtain that v = (⇣�L
A

)u. That is, u = (⇣�

LR

A

)�1(⇣�L
A

)u. From this, we also obtain that v = (⇣�L
A

)u = (⇣�L
A

)(⇣�LR

A

)�1v.
That is, on R(L

A

), (⇣ � L
A

)�1 = (⇣ � LR

A

)�1.

Now, fix u 2 N (L
A

). Then, we have that (⇣ � L
A

)u = ⇣u. Since we assume
⇣ 6= 0, we obtain that (⇣ � L�1

A

)u = ⇣�1u. This proves that ⇢(LR

A

) \ 0 ⇢ ⇢(L
A

) or
�(L

A

) ⇢ �⇢LR

A

[ {0}

Now, suppose that ⇣ 2 ⇢(L
A

). Then, for u 2 R(L
A

) there exists a v 2 R(L
A

)\D(L
A

)
such that u = (⇣�L

A

)v. But (⇣�L
A

)v = (⇣�LR

A

)v. By the invertibility of (⇣�L
A

)
we obtain the invertibility of (⇣ � LR

A

). Thus, ⇢(L
A

) ⇢ ⇢(LR

A

) and �(LR

A

) ⇢ �(L
A

).
Since we already know that 0 2 �(L

A

), we obtain that �(LR

A

) [ {0} ⇢ �(L
A

).

Next, note that since LR

A

is self-adjoint, �(LR

A

) ⇢ nr(LR

A

) where

nr(LR

A

) =
�

hL
A

u, ui : u 2 D(LR

A

), kuk = 1
 

,

is the numerical-range of LR

A

. Moreover, via the Poincaré inequality, we obtain that

JR

A

[u, u] � kruk2 � �
1

(M, g̃)kuk2

for u 2 R(L
A

) \ W1,2(M), and where �
1

(M, g̃) is the first nonzero eigenvalue for
the smooth Laplacian �

g̃

. This shows that ⇢(LR

A

) ⇢ C \ [�
1

(M, g̃),1). ⇤

Moreover, we obtain that the operator L
A

has discrete spectrum.

Proposition 4.4. The spectrum �(L
A

) = {0 < �
1

 �
2

< . . . } is discrete and �
1

�

�
1

(M, g̃).

Proof. Fix � > 0 and write L
A,�

u = L
A

u + �u. It is easy to see that �(L
A,�

) =
{�} [ [�

1

(M, g̃) + �,1). Moreover, the operator L
A,�

is invertible, in fact, L�1

A,�

is

a resolvent of L
A

and thus L�1

A,�

: L2(M) ! L2(M) boundedly.

Furthermore, note that

krL�1

A,�

uk . k

p

L
A,�

L�1

A,�

uk = kL
� 1

2
A,�

uk . kuk.
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Thus, we can obtain that L�1

A,�

: L2(M) ! W1,2(M) boundedly. Let us call this

operator L�1

A,�,W

1,2 .

Now, on a compact manifold, the inclusion map E : W1,2(M) ! L2(M) is compact.
Thus, we can write L�1

A,�

= EL�1

A,�,W

1,2 . This shows that L�1

A,�

is compact. That is,

�(L�1

A,�

) is discrete with 0 as the only accumulation point. Hence, by combining with
our previous bound for the spectrum of �(L

A

), we obtain the claim. ⇤

By the invertibility of LR

A

on R(L
A

), and by our previous characterisation of R(L
A

),
we obtain the following first existence result.

Proposition 4.5. For every f 2 L2(M) satisfying
´
M f dµ

g̃

= 0, we obtain a
unique solution u 2 W1,2(M) with

´
M u dµ

g̃

= 0 to the equation L
A

u = f . This
solution is given by u = (LR

A

)�1f .

Proof. The operator LR

A

is invertible by the fact that the associated form is bounded
and coercive. Moreover, it is easy to see that LR

A

: D(L
A

) \ R(L
A

) ! R(L
A

) and
hence, (LR

A

)�1 : R(L
A

) ! D(L
A

) \R(L
A

). The uniqueness is by virtue of the fact
that N (LR

A

) = {0}. The fact that the solution u 2 W1,2(M) easily follows since
(D(L

A

), k· k
L

A

) ⇢ W1,2(M) is a continuous embedding. ⇤

4.2. Existence and uniqueness for a similar problem. Let us return to the
situation where g is a rough metric on M. Recall that in this situation, there exists
a constant C � 1 and a smooth metric g̃ that is C-close to g. Let B 2 L1(T (1,1)

M)
be such that

g
x

(u, v) = g̃
x

(B(x)u, v)

for almost-every x 2 M. Let ✓(x) =
p

detB(x) for almost-every x 2 M so that
g(x) = ✓(x)dµ

g̃

(x).

For the sake of convenience, we write D
x

= � div
g

!
x

r. It is easy to see that
J
x

[u, v] = h!
x

ru,rvi
g

is the symmetric form associated to D
x

.

First, we note the following.

Proposition 4.6. There exist  > 0 such that J
x

[u, u] � kruk2
g

uniformly for
x 2 M. Moreover, J

x

[u, v] = h!
x

B✓ru,rvi
g̃

and J
x

[u, u] � C1+

n

4
kruk

g̃

. A
function ' 2 W1,2(M) solves (F) if and only if

� div
g̃

(✓B!
x

r') = ✓⌘.

Proof. First, we note that !(x, y) > 0 for all x, y. Secondly, since we assume that
! 2 C0,1(M2), for k � 1, by the virtue of compactness of M, we obtain that
inf

x,y

!(x, y) = min
x,y

!(x, y) > 0. That is, set  = min
x,y

!(x, y) and we’re done.

The description of J
x

in g̃ and its ellipticity estimate in g̃ follow from Proposition
2.10 (i) with p = 2, and r = 1, s = 0.
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The equivalence of solutions for the (F) simply follows from Proposition 2.10 (vi). ⇤

This is the crucial observation which allows us to reduce the (CE) to solving a diver-
gence form equation with bounded, measurable coe�cients on the nearby smooth
metric g̃.

With the aid of this, we demonstrate existence and uniqueness of solutions to (CE).

Proposition 4.7. Let ⌘ 2 L2(M) satisfy
´
M ⌘ dµ

g

= 0. Then, there exists a unique
solution ' 2 W1,2(M) satisfying (F) such that

´
M ' dµ

g

= 0.

Proof. Let f = ✓⌘. Then, note thatˆ
M

f dµ
g̃

=

ˆ
M
⌘✓ dµ

g̃

=

ˆ
M
⌘ dµ

g

= 0.

Set A = ✓B!
x

and by what we have proved about f , we are able to apply Proposition
(4.5) to the operator L

A

in h· , · i
g̃

to obtain a unique solution '̃ satisfying L
A

'̃ =
f = ✓⌘ with

´
M '̃ dµ

g̃

= 0.

Define '(y) = '̃(y)�
�
M

˜'(y) dµ
g

which satisfies J [', f ] = hd
x

(⇢g

t

(x, · ), fi
g̃

and we
also find thatˆ

M
'(y) dµ

g

(y) =

ˆ
M
'̃(y) dµ(y)�

ˆ
M
(

 
M
'̃(y) dµ

g

(y)) dµ
g

(y) = 0.

Thus, ' solves (F).

To prove uniqueness, let us fix two solutions '1 and '2 solving (F) with
´
M 'i dµ

g

=
0. Then, on writing  = '1

�  2, we obtain that  satisfies

� div
g

!
x

r = 0

with
´
M  dµ = 0. Now, define  ̃(y) =  (y) �

�
M  dµ

g̃

. It is easy to see that  ̃
satisfies

�L
A

 ̃ = 0.

with
´
M  ̃ dµ

g̃

= 0. Thus, by the uniqueness guaranteed by Proposition 4.5, we

obtain that  ̃ = 0. That is,  (y) =
�
M  (y) dµ

g̃

(y), and on integrating this with
respect to g, we obtain that

0 = µ
g

(M)

 
M
 (y) dµ

g̃

(y).

That is,  =  ̃ = 0. ⇤

4.3. Operator theory of x 7! D
x

. Let us return to the PDE (F), and recall
the operator D

x

= � div
g

!
x

r where (x, y) 7! !
x

(y) 2 C0,1(M2), and x 7! !
x

2

Ck,↵(N 2). Let J
x

[u, v] be its associated symmetric form, J
x

[u, v] = h!
x

ru,rvi.

In order to understand the regularity x 7! '
t,x,v

of solutions to (CE), we need to
prove some preliminary regularity results about the operator family D

x

. First, we
obtain the constancy of domain as well as the following formula.
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Proposition 4.8. The family of operators M 3 x 7! D
x

satisfies D(D
x

) = D(�
g

)
and D

x

u = !
x

�
g

u� g(ru,r!
x

).

Proof. Fix x 2 M and u, v 2 W1,2(M). Then, note that !
x

v 2 W1,2(M) and that,

hru,r(!
x

v)i
g

= hru,!
x

rv + vr!
x

i

g

= h!
x

ru,rvi
g

+ hg(ru,r!
x

), vi
g

.

That is, h!
x

ru,rvi
g

= hru,r(!
x

v)i
g

� hg(ru,r!
x

), vi
g

.

First we show that for any u 2 W1,2(M), v 7! hg(ru,r!
x

), vi
g

is continuous.
Observe that |hg(ru,r!

x

), vi
g

|  kg(ru,r!
x

)k
g

kvk
g

by the Cauchy-Schwarz in-
equality. Moreover,

kg(ru,r!
x

)k2
g

=

ˆ
M

|g(ru,r!
x

)|2 dµ
g



ˆ
M

|ru|2|r!
x

|

2 dµ
g

.

However, since y 7! !
x

(y) 2 C0,1(M) andM is compact, we have that esssup
y

|r!
x

(y)| 
C, and hence, kg(ru,r!

x

)k
g

 Ckruk
g

. This proves that v 7! hg(ru,r!
x

), vi
g

is
continuous.

Now, suppose that u 2 D(�
g

), then hru,r(!
x

v)i
g

= h�
g

u,!
x

vi and hence, v 7!

hru,r(!
x

v)i
g

is continuous. Since we have already shown that v 7! hg(ru,r!
x

), vi
g

is continuous, we obtain that v 7! h!
x

ru,rvi is continuous. Hence, u 2 D(D
x

)
which proves that D(�

g

) ⇢ D(D
x

).

Similarly, for u 2 D(D
x

), we find that v 7! hru,r(!
x

v)i
g

is continuous. Hence,
u 2 D(!

x

�
g

) = D(�
g

). This shows that D(D
x

) ⇢ D(�
g

). ⇤
Remark 4.9. We note that an immediate consequence of this is that the unique
solution ' to (F) satisfies ' 2 D(�

g

), since D(�
g

) = D(D
x

) = D(L
x

). This
observation is essential to obtain regularity of solutions.

We also obtain the following uniform boundedness for the operator family parametrised
in x 2 N .

Proposition 4.10. The family of operators M 3 x 7! D
x

: (D(�
g

), k· k
�g) !

L2(M) is a uniformly bounded family of operators. Moreover, kuk
D

x

' kuk
�g holds

with the implicit constant independent of x 2 M.

Proof. We show that kD
x

uk . kuk
�g = k�

g

uk + kuk, where the implicit constant
is independent of x 2 M. Fix x 2 M, and note that

kD
x

uk  k!
x

�
g

uk+ kg(ru,r!
x

)k



✓

sup
y2M

|!
x

(y)|

◆

k�
g

uk+
�

esssup
y2M |r!

x

(y)|
�

kruk.

But since (x, y) 7! !
x

(y) 2 C0,1(M2), the Lipschitz constant is in both variables,
and hence, there is a C > 0 such that esssup

y2M |r!
x

(y)|  C. The quantity
sup

y2M |!
x

(y)| is also independent of C simply by coupling the continuity of (x, y) 7!
!
x

(y) with the compactness of M.
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Now, note that by ellipticity,

kruk2  |h�
g

u, ui|  k�
g

ukkuk  k�
g

uk2 + kuk2.

This complete the proof. The reverse inequality is argued similarly on noting that
!
x

(y) > 0 for all x, y 2 M. ⇤
Remark 4.11. Note that the two previous propositions are valid on all of M, not
just on N ⇢ M where x 7! !

x

enjoys higher regularity.

Let v 2 T
x

M and � : (�", ") ! M such that �(0) = x and �̇(0) = v. Let
f : N ! V , where V where V is some normed vector space. Then, we write the
di↵erence quotient as

Qv

s

f(x) =
f(x)� f(�(s))

s
.

We define the directional derivative of f (when it exists, and it is independent of
the generating curve �) to be

(d
x

f(x))(v) = lim
s!0

Qv

s

f(x).

In our particular setting, we consider V = L2(M) with the weak topology for the
choice f(x) = D

x

. More precisely, if there exists D̃
x

: D(�
g

) ! L2(M) satisfying

lim
s!0

hQv

s

D
x

u, wi = hD̃
x

u, wi,

for every w 2 W1,2(M), we say that D
x

has a (weak) derivative at x and write
(d

x

D
x

) = D̃
x

. In what is to follow, we will see that this is a su�ciently strong
enough notion of derivative to obtain regularity properties for the flow defined by
(GM).

With this notation at hand, we prove the following important proposition.

Proposition 4.12. The operator valued function N 3 x 7! D
x

: D(�
g

) ! L2(M)
is weakly di↵erentiable k times. At each x 2 N and for every v 2 T

x

M,

(d
x

D
x

)(v) = � div
g

((d
x

!
x

)(v))r : D(�
g

) ! L2(M)

is densely-defined and symmetric. Moreover, inside a chart ⌦ b N containing x for
which the vector v is constant, there is a constant C

⌦

such that

k(d
x

D
x

)(v)uk  C
⌦

kuk
�g .

Proof. Fix x 2 N and a chart ⌦ b N with a constant vector v 2 T
x

M, and note
that because of the higher regularity of !

x

at x, we have (x, y) 7! (d
x

!
x

(y))(v) 2

C0(⌦ ⇥M) and x 7! (d
x

!
x

(y))(v) 2 C0,1(M). Coupling this with the compactness
of M and ⌦, there exists ⇤ > 0 such that �⇤ < (d

x

!
x

(y))(v) < ⇤, for all x 2 ⌦
and y 2 M. Thus, let f

x,"

= (d
x

!
x

)(v) +⇤+ " and define K
"

[u, w] = hf
x,"

ru,rwi.
By the Lax-Milgram theorem, the operator associated to the form K

"

is exactly

D̃
x,"

= � div
g

[((d
x

!
x

)(v)) + (⇤ + ")]r,

and is guaranteed to be non-negative self-adjoint. Since we have that !
x

is k times
di↵erentiable at our chosen x, the map y 7! f

x,"

(y) is still Lipschitz and hence, we are
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able to apply Proposition 4.8 with f
x,"

in place of !
x

to obtain that D(D̃
x,"

) = D(�
g

).
Consequently, we obtain that D̃

x,"

� (⇤ + ")�
g

has domain D(�
g

) and so, an easy
calculation via the defining form, demonstrates that

D0
x

u = � div
g

(d
x

!
x

)(v)ru = D̃
x,"

u� (⇤ + ")�
g

u,

from which its clear that the operator is densely-defined.

A repetition of the argument in Proposition 4.10, utilising the higher regularity of
x 7! !

x

on N , there exists a constant C
⌦

> 0 such that |(d
x

!
x

(y))(v)|  C
⌦

for all
x 2 ⌦ and almost-every y 2 M. Thus, kD

x,"

uk  C
⌦

kuk
�g and the estimate in the

conclusion follows.

Now we show that the formula in the conclusion is valid. Fix w 2 W1,2(M), u 2

D(�
g

) and compute

lim
s!0

hQv

s

D
x

u, wi = lim
s!0

h� divQv

s

!
x

ru, wi = lim
s!0

hQv

s

!
x

ru,rwi

= lim
s!0

ˆ
M

Qv

s

!
x

(y)g
y

(ru(y),rw(y)) dµ
g

(y).

Now, note that

|Qv

s

!
x

(y)| 

�

�

�

�

!
x

(y)� !
�(s)

(y)

s

�

�

�

�

 C

since (x, y) 7! !
x

(y) 2 C0,1(M2) and x 7! !
x

2 C1(M). So, we are able to apply
the dominated convergence theorem to obtain

lim
s!0

hQv

s

D
x

u, wi =

ˆ
M

lim
s!0

Qs

v

!
x

(y)g
y

(ru(y),rw(y)) dµ
g

(y)

= h(d
x

D
x

)(v)ru,rwi = h� div
g

(d
x

D
x

)(v)ru, wi,

where the last equality follows from the fact that we assume that u 2 D(�
g

) and
we have already shown that D(� div

g

((d
x

!
x

)(v))r) = D(�
g

).

The equality of operators in the conclusion follows from the fact that w 2 C1
c

(M)
is dense in L2(M). ⇤
Remark 4.13. Let v

1

, . . . , v
l

2 T
x

M, with k  l, and note that the map (x, y) 7!
(dl

x

!
x

)(v
1

, . . . , v
l

) 2 C0,1(M2), where (d2

x

!
x

)(v
1

, v
2

) = (d
x

(d
x

!
x

)(v
1

))(v
2

). Thus, on
applying this proposition repeatedly, we can assert that

(dl

x

D
x

)(v
1

, . . . , v
l

) = � div
g

((dl

x

!
x

)(v
1

, . . . , v
l

))r : D(�
g

) ! L2(M)

is a densely-defined operator.

Now, we are able to prove the following product rule for the operator D
x

. This
product rule is the essential tool for obtaining the existence of weak derivatives
@
x

'
x

of solutions for (CE).

Proposition 4.14. Let x 7! u
x

: N ! D(�
g

), v 2 T
x

M and suppose that (d
x

u
x

)(v)
exists weakly. Then (d

x

D
x

u
x

)(v) exists weakly if and only if D
x

((d
x

u
x

)(v)) exists
weakly and

(d
x

D
x

u
x

)(v) = (d
x

D
x

)(v)u
x

+D
x

((d
x

u
x

)(v)).
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Proof. Fix w 2 W1,2(M) and define f(x, y) = hD
x

u
y

, wi. Let � : (�", ") ! M be a
curve in M satisfying �(0) = x and �̇(0) = v. Now, note that for s > 0,

(†)
1

s
[f(�(s), �(s))�f(x, x)] =

1

s
[f(�(s), �(s))�f(x, �(s))]+

1

s
[f(x, �(s))�f(x, x)]

By Proposition 4.12, (d
x

f(x, y))(v)|
y=x

exists and

(d
x

f(x, y))(v)|
y=x

= lim
s!0

1

s
[f(�(s), y)� f(x, y)]|

y=x

= lim
t!0

lim
s!0

1

s
[f(�(s), �(t))� f(x, �(t))]

= lim
s!0

1

s
[f(�(s), �(s))� f(x, �(s))].

Assume that (d
x

D
x

u
x

)(v) exists weakly. Then, by (†), lim
s!0

s�1[f(x, �(s))�f(x, x)]
exists and so, by further choosing w 2 D(�

g

),

lim
s!0

1

s
[f(x, �(s))� f(x, x)] = lim

s!0

h

1

s
D

x

(u
x

� u
�(s)

), wi

= lim
s!0

hQv

s

u
x

,D
x

wi = h(d
x

u
x

)(v),D
x

wi,

Also, by (†),

h(d
x

u
x

)(v),D
x

wi = h@
x

(D
x

u
x

)(v)� (@
x

D
x

)(v)u
x

, wi,

and since the right hand side is continuous in w, we obtain that (d
x

u
x

)(v) 2 D(D
x

) =
D(�

g

).

Now, if D
x

(d
x

u
x

)(v) exists weakly, then from (†), we are able to assert that the limit
lim

s!0

s�1[f(�(s), �(s))� f(x, x)] exists, which is precisely that d
x

(D
x

u
x

)(v) exists
weakly. The product rule formula is obvious from these computations. ⇤
Remark 4.15. If the function (x, y) 7! !

x

(y) 2 Ck(M2) for k � 1, then we are able
to perform this analysis in the uniform operator topology L((D(�

g

), k· k
�g),L

2(M)).
This involves estimating the term sup

x,y2M |rQv

s

w
x

(y)| and showing that this quan-
tity tends to 0 as s ! 0. It is clear that such an estimate cannot be made even
with the supremum replaced by an essential supremum when (x, y) 7! !

x

(y) is only
Lipschitz.

4.4. Regularity of solutions. We combine the results obtained in the previous
subsections to prove the following regularity theorem for solutions to (F). First, we
note the following lemma.

Lemma 4.16. Let
´
M u dµ

g

= 0. Then, kL
� 1

2
x

uk . kuk and kL�1

x

uk . kuk, where
the implicit constants are independent of x.

Proof. For this, note that D
x

= ✓�1L
x

and that

hL
x

v, vi
g̃

� krvk
g̃

.

If we assume that
´
M v dµ

g̃

= 0, then we have by Proposition 4.6 that k
p

L
x

vk �

�
1

(M, g̃)kvk uniformly in x. This shows the uniform boundedness for L
� 1

2
x

.
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Next, set v =
p

L
x

w for w 2 D(�
g

), we obtain that kL
x

wk
g̃

= 2�
1

(M, g̃)2kwk
g̃

.
That is, kL�1

x

wk
g̃

. kwk
g̃

. Now, for u 2 D(�
g

) satisfying
´
M u dµ

g

= 0, we have
that w = ✓u satisfies

´
M w dµ

g̃

= 0 and L�1

x

w = L�1

x

u and so kL�1

x

uk
g

' kL�1

x

wk
g̃

.
kwk

g̃

= k✓uk
g̃

= kuk
g

. ⇤

With this tool in hand, we present the following regularity theorem.

Theorem 4.17. Suppose that k � 1 and (x, y) 7! !
x

(y) 2 C0,1(M2) and x 7! !
x

2

Ck(N ). Moreover, suppose that (x, y) 7! ⌘
x

(y) 2 C0(N ⇥ M) and x 7! ⌘
x

(y) 2

Cl(N ) where l � 1. If at x 2 N , '
x

solves (F) with
´
M '

x

dµ
g

=
´
M ⌘

x

dµ
g

= 0,
the map x 7! h⌘

x

,'
x

i 2 Cmin{k,l}�1,1(N ).

Proof. Fix v 2 T
x

M and assuming (d
x

'
x

)(v) exists in D(�
g

), we obtain that
(d

x

⌘
x

)(v) = (d
x

D
x

)(v)'
x

+D
x

(d
x

'
x

)(v). Thus, on writing

⌘0
x,v

= (d
x

⌘
x

)(v)� (d
x

D
x

)(v)'
x

and rearranging the previous expression, we note that (d
x

'
x

)(v) exists as a solution
to D

x

(d
x

'
x

)(v) = ⌘0
x

. We further note that this PDE is again of the form (F).

Fix a curve � : (�", ") ! M such that �(0) = x and �̇(0) = v. Then,ˆ
M
(d

x

⌘
x

)(v) dµ
g

=

ˆ
M

d

dt
|

t=0

⌘
�(t)

dµ
g

=
d

dt
|

t=0

ˆ
M
⌘
�(t)

dµ
g

= 0

simply by virtue of the fact that
´
M ⌘

x

dµ
g

= 0 for each x.

Next, note that by Proposition 4.12ˆ
M
(d

x

D
x

)(v)'
x

dµ
g

= h(d
x

D
x

)(v)'
x

, 1i
g

= h(d
x

!
x

)(v)r'
x

,r(1)i
g

= 0.

Thus, we have shown that
´
M ⌘0

x

dµ
g

= 0 and hence, by Proposition 4.7, we obtain
that (d

x

'
x

)(v) 2 D(�
g

) ⇢ W1,2(M) exists.

Next, we show that x 7! h⌘
x

,'
x

i is di↵erentiable. For that, let us write f(x, y) =
h⌘

x

,'
y

i. By (†), we have that

(d
x

f(x, x))(v) = (d
x

f(x, y))(v)|
y=x

+ d
x

(f(y, x))(v)|
y=x

when the limits exist.

So, first for the first expression on the left hand side,

(d
x

f(x, y))(v)|
y=x

= lim
s!0

hQv

s

⌘
x

,'
x

i = h(d
x

⌘
x

)(v),'
x

i.

For the second expression,

(d
x

f(y, x))|
y=x

) = h⌘
x

, (d
x

'
x

)(v)i.

Now we show that the directional derivative is bounded in small neighbourhoods
containing x. So, fix ⌦ b N a coordinate chart containing x in which the vector v
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is constant in this chart. We note that it su�ces to show that

|(d
x

h⌘
x

,'
x

i)(v)| . p(k⌘
x

k, k(d
x

⌘
x

)(v)k),

for a polynomial p since k⌘
x

k, k(d
x

⌘
x

)(v)k  C, where the constant C and the
implicit constant depend on ⌦. This demonstrates that x 7! h⌘

x

,'
x

i is continuous
at x with bounded derivatives, which in turn implies that this function is Lipschitz,
and moreover that the di↵erential exists almost-everywhere.

Recall that by Proposition 4.7, '
x

= L�1

x

✓⌘
x

+ c, where c
x

=
�
M D�1

x

✓⌘
x

dµ
g

. Simi-
larly, (d

x

'
x

)(v) = L�1

x

✓⌘0
x,v

+ c0 where c0
x

=
�
M L�1

x

✓⌘0
x,v

dµ
g

. Hence,

|(d
x

f(x, y))(v)|
y=x

| = |h⌘
x

,L�1

x

✓⌘
x

+ c
x

i|  k⌘
x

kkL�1

x

✓⌘
x

k+ kc
x

kk✓⌘
x

k.

Now, note that by Lemma 4.16, kL�1

x

✓⌘
x

k . k⌘
x

k, where the constant is uniform in
x 2 M, and that  

M
L�1

x

✓⌘
x

dµ
g

 kL�1

x

✓⌘
x

k . k⌘
x

k,

which shows that kc
x

k . k⌘
x

k. Thus,

|(d
x

f(x, y))(v)|
y=x

| . k⌘
x

k

2

with the constant independent of x 2 M.

We estimate the remaining term,

|(d
x

f(y, x))|
y=x

)| = |h⌘
x

,L�1

x

✓(d
x

⌘
x

)(v)� L�1

x

✓(d
x

L
x

)(v)'
x

) + c0
x

i|

 |h⌘
x

,L�1

x

✓(d
x

⌘
x

)(v)i|+ |h⌘
x

,L�1

x

✓(d
x

L
x

)(v)'
x

)i|+ |hc0
x

, ⌘
x

i|.

Now,

|h⌘
x

,L�1

x

✓(d
x

⌘
x

)(v)i| . k⌘
x

k+ kL�1

x

✓(d
x

⌘
x

)(v)k . k⌘
x

k+ k(d
x

⌘
x

)(v)k,

and

|h⌘
x

,L�1

x

✓(d
x

D
x

)(v)[L�1

x

✓⌘
x

+ c]i| . k⌘
x

k+ kL�1

x

✓(d
x

D
x

)(v)L�1

x

✓⌘
x

k

. k⌘
x

k+ k(d
x

D
x

)(v)L�1

x

✓⌘
x

k,

again by Lemma (4.16) where the implicit constant is independent of x since (d
x

D
x

)(v)c
x

=
0 by the fact that c

x

2 N (r). For the last term, note that

kc0
x

k . k⌘0
x,v

k  k(d
x

⌘
x

)(v)k+ k(d
x

D
x

)L�1

x

✓⌘
x

k.

By these calculations, it su�ces to show that k(d
x

D
x

)(v)L�1

x

✓⌘
x

k . k⌘
x

k, where the
implicit constant depends on ⌦. In order to estimate this term, note that by by
Proposition 4.12 k(d

x

D
x

)(v)uk . k�
g

uk+ kuk uniformly in x 2 ⌦, and therefore,

k(d
x

D
x

)(v)L�1

x

✓⌘
x

k . k�
g

L�1

x

✓⌘
x

k+ kL�1

x

✓⌘
x

k

. k⌘
x

k+ kL�1

x

✓⌘
x

k+ kL�1

x

✓⌘
x

k . k⌘
x

k.

To prove higher di↵erentiability and continuity for x 2 N , it su�ces to repeat the
argument upon replacing ⌘0

x,v

and !
x

, mutatis mutandis, to solve for higher weak
derivatives. It is easy to see that this procedure can only be repeated as many times
as the minimum of the regularity of ⌘

x

and !
x

. ⇤
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5. The flow for rough metrics with Lipschitz kernels

From this section onward, we assume that the heat kernel improves to be di↵eren-
tiable on the non-empty open region N , i.e., we assume that for some k � 1, ⇢g

t

2

Ck,↵(N 2). Moreover, for the purpose of our analysis, we assume that ⇢g

t

2 C0,1(M2),
i.e., that it is a Lipschitz function on M

2. The set N will typically be such that
M\N is a set of null measure.

Now, fix t > 0, x 2 N , and v 2 T
x

M, and recall the following linear PDE satisfying,
for '

t,x,v

2 W1,2(M),

(CE)

� div
g

(⇢g

t

(x, y)r'
t,x,v

(y)) = (d
x

⇢g

t

(x, y))(v)ˆ
M
'
t,x,v

(y) dµ
g

(y) = 0.

The flow of Gigli-Mantegazza defined in [13], is then given by

(GM) g
t

(u, v)(x) =

ˆ
M

g(r'
t,x,u

(y),r'
t,x,v

(y)) ⇢g

t

(x, y) dµ
g

(y).

5.1. Heat kernels for the rough metric Laplacian. The Laplacian for a rough
metric is the non-negative self-adjoint operator �

g

= � div
g

r, the operator associ-
ated with the real-symmetric form J [u, v] = hru,rvi

g

.

Recall, we say that ⇢
g

: R
+

⇥M ⇥M is the heat kernel of �
g

if it is the minimal
solution ⇢g

t

: M⇥M ! R�0

to the heat equation

(HK)
@
t

⇢g

t

(x, ) = �
0

⇢g

t

(x, · )

lim
t!0

@
t

⇢g

t

(x, · ) = �
x

,

where �
x

is the Dirac mass at x 2 M, satisfying

⇢g

t

(x, y) = ⇢g

t

(y, x), ⇢g

t

(x, y) � 0, and

ˆ
M

g
t

(x, y) dµ
g

(y) = 1.

Given an initial u
0

2 L2(M), we are able to write

e�t�gu
0

(x) =

ˆ
M

⇢g

t

(x, y)u(y) dµ
g

(y)

for almost-every x 2 M.

The following guarantees the existence of a heat kernel and its regularity properties.

Theorem 5.1. The heat kernel for �
g

exists and there exists ↵ > 0 such that
⇢g

t

2 C↵(M2).

Proof. This can be obtained as a direct consequence of Theorem 7.4 in [26] by Sturm,
where (X, d,m) = (M, d

g̃

, ✓�1µ
g̃

), where µ
g

= ✓�1µ
g̃

, and where the Dirichlet energy
E(f) = hrf,rfi

g

with D(E) = W1,2(M). Indeed, the measure µ
g

is Radon as
asserted by Proposition 2.3. Moreover, the measure contraction property : for any
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compact set Y ⇢ M, there exists �
t

(x,A) : [0, 1] ! M and a constant C 0 > 0 such
that such that

µ
g̃

(A)

µ
g̃

(B
r

(x))
 C 0µg̃

(�
t

(x,A))

µ
g̃

(B
tr

(x))
is valid for (M, d

g̃

, g̃) by the virtue of the fact this space is a smooth Riemannian
manifold (see Example 1D in [26]). But since the aforementioned Proposition gives
that C�n/2µ

g

 µ
g̃

 Cn/2µ
g̃

, we have that the mean contraction property holds
holds for the measure µ

g

. The fact that we obtain a C↵ regular heat kernel for ↵ > 0
is because we are in a compact space, and local Hölder regularity improves to Hölder
regularity automatically. ⇤

We remark that this result can be obtained directly by considering uniformly elliptic
operators with L1 coe�cients via the results of Salo↵-Coste in §6 in his paper [25].

Before we present the main theorem regarding the existence of this metric when the
initial metric is rough, we present the following two lemmas which allow us to assert
the non-degeneracy of this metric, when it exists.

Lemma 5.2 (Backward uniqueness of the heat flow). Let u
t

2 L2(M) be a strict so-
lution to the heat equation @

t

u
t

= �
g

u
t

with lim
t!0

u(t, x) = ⌅, where ⌅ 2 W�1,2(M)
is a distribution. If there exists some t

0

> 0 such that u
t0 = 0, then u

t

= 0 for all
t > 0 and lim

t!0

u(t, · ) = 0 in the sense of distributions.

Proof. First, suppose that ⌅ = v 2 L2(M). Then, u(t, x) = e�t�gv and we note that

hv, e�t�gvi
g

= hv, e�
1
2 t�ge�

1
2 t�gvi

g

= he�
1
2 t�gv, e�

1
2 t�gvi

g

= ke�
1
2 t�gvk,

where the second equality follows by the self-adjointness of �
g

. Thus, at t = t
0

, we
obtain that ke�

1
2 t0�gvk = 0 and by induction, e

1
2n t0�gv = 0. Hence,

v = lim
t!0

e�t�gv = lim
n!1

e
1
2n t0�gv = 0.

Now, for the case of an arbitrary distribution ⌅, we note that for s > 0, u
t+s

=
e�t�gu

s

and therefore, applying our previous argument with v = u
s

, we obtain that
u
s

= 0 for every s > 0. Now, fix f 2 C1
c

(M), a test function, and since h· , · i
extends continuously to a pairing W�1,2(M)⇥ C1

c

(M), we obtain that

0 = lim
t!0

ˆ
M

u
t

(x)f(x) dµ
g

(x).

That is, ⌅ = 0. ⇤

Also, we have the following.

Lemma 5.3. The function y 7! ⇢g

t

(x, y) 2 D(�
g

) and for all t > 0, @
t

⇢g

t

(x, · ) =
�

g

⇢g

t

(x, · ) for each x 2 M. If ? 6= N is an open subset on which (x, y) 7! ⇢g

t

2

Ck(N 2) (for k � 1), then for every x 2 N and v 2 T
x

M, y 7! (d
x

⇢g

t

(x, y))(v) solves

@
t

(d
x

⇢g

t

(x, · ))(v) = �
g

(d
x

⇢g

t

(x, · ))(v), lim
t!0

(d
x

⇢g

t

(x, · ))(v) = D
x,v

,

where D
x,v

2 W�1,2(M) is given by D
x,v

f = (d
x

f)(v).



GEOMETRIC SINGULARITIES AND A FLOW TANGENT TO THE RICCI FLOW 27

Proof. The fact that x 7! ⇢g

t

(x, y) 2 D(�
g

) and @
t

⇢g

t

(x, · ) = �
g

⇢g

t

(x, · ) for t > 0 is
by definition that ⇢g

t

: M2

! R
+

is the fundamental solution to the heat equation.

First, note that

@
t

(d
x

⇢g

t

(x, · ))(v) = d
x

(@
t

⇢g

t

(x, · ))(v) = d
x

(�
g

⇢g

t

(x, · ))(v).

Now, fix u 2 D(�
g

) and, fix a curve � : (�", ") ! N such that �(0) = x, �̇(0) = v,
and observe that

h(d
x

�
g

⇢g

t

(x, · ))(v), ui
g

=

ˆ
M
(d

x

�
g

⇢g

t

(x, y))(v)u(y) dµ
g

(y)

=

ˆ
M

d

ds
|

s=0

�
g

⇢g

t

(�(s), y)u(y) dµ
g

(y)

=
d

ds
|

s=0

ˆ
M

�
g

⇢g

t

(�(s), y)u(y) dµ
g

(y)

=
d

ds
|

s=0

ˆ
M

⇢g

t

(�(s), y)�
g

u(y) dµ
g

(y)

=

ˆ
M

d

ds
|

s=0

⇢g

t

(�(s), y)�
g

u(y) dµ
g

(y)

= h(d
x

⇢g

t

(x, · ))(v),�
g

ui
g

.

This shows that u 7! h(d
x

⇢g

t

(x, · ))(v),�
g

ui = h(d
x

�
g

⇢g

t

(x, · ))(v), ui
g

is continuous
in u and hence (d

x

⇢g

t

(x, · ))(v) 2 D(�
g

) and by a similar calculation,

h@
t

(d
x

�
g

⇢g

t

(x, · ))(v), ui
g

= h�
g

(d
x

⇢g

t

(x, · ))(v), ui
g

.

Since D(�
g

) is dense in L2(M), we obtain that (d
x

�
g

⇢g

t

(x, · ))(v) solves the heat
equation.

Now, fix f 2 C1
c

(M). Then,

lim
t!0

ˆ
M
(d

x

⇢g

t

(x, y))(v)f(y) dµ
g

(y) = lim
t!0

ˆ
M

d

ds
|

s=0

⇢g

t

(�(s), y)f(y) dµ
g

(y)

= lim
t!0

d

ds
|

s=0

ˆ
M

⇢g

t

(�(s), y)f(y) dµ
g

(y)

=
d

ds
|

s=0

lim
t!0

ˆ
M

⇢g

t

(�(s), y)f(y) dµ
g

(y)

=
d

ds
|

s=0

f(�(s))

= (d
x

f)(v).

⇤

In order to apply the elliptic tools we’ve described in the previous sections, we need
to assert that ⇢g

t

(x, y) > 0. This is the content of the following lemma.

Lemma 5.4. For each t > 0, there exist 0 < 
t

,⇤
t

< 1 such that 
t

 ⇢g

t

(x, y) 
⇤

t

.
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Proof. Fix z 2 M and note that y 7! ⇢g

t

(z, y) is again a solution to the heat equation.
Now, assume that at some time t

0

, ⇢g

t0
(z, x) = 0. Then,

0 =

ˆ
M

⇢g

1
2 t0

(x, y)⇢g

1
2 t0

(z, y) dµ
g

(y).

Since ⇢g

t

(x, y) � 0 and is at least continuous, we have that either ⇢g

1
2 t0

(x, y) = 0 or

⇢g

1
2 t0

(z, y) = 0 for all y 2 M.

Now, by Lemma 5.2, we can obtain that either 0 = lim
t!0

⇢g

t

(x, · ) = �
x

or 0 =
lim

t!0

⇢g

t

(z, · ) = �
z

, both of which cause a contradiction. This shows that ⇢g(x, y) >
0 for each t > 0 and for all x, y 2 M.

By the compactness of M, we obtain that


1

= inf
x,y2M

⇢g

t

(x, y) = min
x,y2M

⇢g

t

(x, y) > 0, and

⇤
1

= sup
x,y2M

⇢g

t

(x, y) = max
x,y2M

⇢g

t

(x, y) < 1.

This completes the proof. ⇤

5.2. The flow. We collate the results we have obtained so far and present the
following existence and regularity theorem for g

t

.

Proof of Theorem 3.1. First, we show that for each t > 0, x 2 M and v 2 T
x

M,
there exists a unique '

t,x,v

2 W1,2(M) which solves (CE). By Lemma 5.4, we are
able to apply Proposition 4.7 on setting !

x

(y) = !(x, y) = ⇢g

t

(x, y) and ⌘(y) =
d
x

(⇢g

t

(x, y))(v).

The only thing that needs to be to be checked is that
´
M ⌘ dµ

g

= 0. In order to do
so, let � : I ! M be a curve so that �(0) = x and �̇(0) = v. Then, on noting that

(d
x

(⇢g

t

(x, y)))(v) =
d

ds
|

s=0

⇢g

t

(�(s), y),

we computeˆ
M

d

ds
|

s=0

⇢g

t

(�(s), y) dµ
g

=

ˆ
M

d

ds
|

s=0

⇢g

t

(�(s), y) dµ
g

=
d

ds
|

s=0

ˆ
M

⇢g

t

(�(s), y) dµ
g

=
d

ds
|

s=0

1 = 0,

where in the second line, we have used the dominated convergence theorem to in-
terchange the integral and the limit involved in di↵erentiation. Thus, on invoking
Proposition 4.7, we obtain a unique solution '

t,x,v

2 W1,2(M) with
´
M '

t,x,v

dµ
g

= 0.
It is easy to see then that g

t

is symmetric at each x.

Next, we show thatr'
t,x,v

= 0 if and only if v = 0. Fix v 6= 0, and recall Lemmas 5.2
and 5.3 to conclude that (d

x

⇢g

t

(x, · ))(v) 6= 0 since lim
t!0

(d
x

⇢g

t

(x, · ))(v) = D
x,v

6= 0.
Since the solution provided by Proposition 4.5 is obtained by inverting the one-one
operator LR

A

in Proposition 4.5, we must have that  
t,x,v

62 N (LR

A

) = N (r). It
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is easy to see that if v = 0, then (d
x

⇢g

t

(x, · ))(v) = 0 and hence, '
t,x,v

= 0. This
shows that g

t

(u, u)(x) � 0 and g
t

(u, u)(x) = 0 if and only if u = 0. That is, g
t

is
non-degenerate.

Furthermore, it is easy to see that, for ↵ 6= 0, ↵'
t,x,v

solves the equation (CE) with
source term (d

x

⇢g

t

(x, · ))(↵v) and that, by linearity of the equation (CE), '
t,x,v

+
'
t,x,u

solves (CE) with source term (d
x

⇢g

t

(x, · ))(u+ v). Hence, ↵'
t,x,v

= '
t,x,↵v

and
'
t,x,v

+ '
t,x,u

= '
t,x,u+v

. That is, g
t

(↵u, v)(x) = ↵g
t

(u, v)(x) and g
t

(u + v, w)(x) =
g
t

(u, w)(x) + g
t

(v, w)(x). Thus, g
t

is linear in the first variable.

By combining symmetry, non-degeneracy, and linearity in the first variable shows
that g

t

(x) : T
x

M ! T
x

M ! R
>0

defines an inner product on T
x

M and hence, a
Riemannian metric.

Regularity is then a simple consequence of Theorem 4.17 since |u|2
g

t

(x)

= h⌘
x,u

,'
x,u

i,
and the same regularity can be obtained for x 7! g

t

(u, v)(x) via polarisation. ⇤

6. Regularity of the flow for sufficiently smooth metrics

In [13], the authors demonstrate that the flow g
t

is smooth for all positive times
when starting with a smooth initial metric. We demonstrate this similar result but
when the metric is assumed to be Ck,↵, where k � 1. Our approach is to demonstrate
that we are able to localise our weak solutions, and then, for this more regular class
of metrics, apply Schauder theory to obtain higher (k + 1) regularity for the heat
kernel ⇢g

t

. On applying Theorem 4.17, we are able to assert that g
t

remains Ck.

6.1. Higher regularity of the flow for C1 heat kernels. First, we demonstrate
that for a C1 heat kernel, the regularity theorem (see Theorem 4.17) improves from
Ck�1,1 to Ck.

Recall that L
x

u = div
g̃

(A✓!
x

)ru. We estimate the di↵erence between such opera-
tors. We fix f : M ⇥ M ! R, with �⇤  f(x, y)  ⇤ for x 2 U , where U is an
open set. Define ⌅ : U ⇥ U ! R�0

by

⌅(x, y) = kf
x

� f
y

k1 + kr(f
x

� f
y

)k1,

where f
x

= f(x, · ).

Lemma 6.1. Let (x, y) 7! f
x

2 C1(M2) and let ⇤ > 0 such that �⇤  f
x

(y)  ⇤
for x 2 U , where U is an open set and all y 2 M. Define T

x

u = � div
g

f
x

ru with
domain D(T

x

) = D(�
g

). Then, whenever u 2 D(�
g

),

kT
x

u� T
y

uk . ⌅(x, y)kuk
�g .

whenever x, y 2 U and where the implicit constant depends on U .

Proof. Define F
x

= f
x

+ 2⇤ and it follows that ⇤  F
x

 3⇤ on U ⇥ M. On
setting S

x

u = � div
g

F
x

ru, by Proposition 4.8, we obtain that D(S
x

) = D(�
g

) and
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S
x

u = F
x

�
g

u + g(ru,rF
x

). It is easy to check that T
x

u = S
x

u � 2⇤�
g

u and
therefore, T

x

u� T
y

u = S
x

u� S
y

u.

We compute,

kS
x

u� S
y

uk  k(F
x

� F
y

)�
g

uk+ kg(ru,r(F
x

� F
y

)k,

but F
x

� F
y

= f
x

� f
y

, and hence, it follows that

kT
x

u� T
y

uk  kf
x

� f
y

k1k�
g

uk+ kr(f
x

� f
y

)k1kruk.

The estimate kruk . kuk
�g is trivial, and so the claim is proved. ⇤

We have a similar result for the resolvents L�1

x

on the range of the operator L
x

.

Lemma 6.2. Suppose that (x, y) 7! !
x

(y) 2 C1(M2) and let u
1

, u
2

2 L2(M) satisfy´
M u

1

dµ
g̃

=
´
M u

2

dµ
g̃

= 0. Then,

kL�1

x

u
1

� L�1

y

u
2

k . ⌅(x, y)ku
1

k+ ku
1

� u
2

k.

The implicit constant is independent of x and this expression is valid for all x, y 2

M.

Proof. First note that for v 2 D(�
g

) = D(L
x

),

kL
x

v � L
y

vk = k✓(D
x

v �D
y

v)k . kD
x

v �D
y

vk . ⌅(x, y)kvk
�g

by invoking Lemma 6.1 with U = M.

Now, fix u 2 L2(M) with
´
M u dµ

g̃

= 0 and note that L�1

x

u = L�1

x

(L
y

L�1

y

)u =
(L�1

x

L
y

)L�1

y

)u. Also, L�1

y

u = L�1

x

L
x

L�1

y

u since the resolvent and operator commute
on its domain. Thus,

kL�1

x

u� L�1

y

uk = kL�1

x

L
y

L�1

y

u� L�1

x

L
x

L�1

y

uk = kL�1

x

(L
y

� L
x

)L�1

y

uk

. k(L
y

� L
x

)L�1

y

uk . ⌅(x, y)kL�1

y

uk
�g ,

since by Lemma 4.16, we have that kL�1

x

uk . kuk independent of x. By Proposition
4.10, we obtain that kvk

�g ' kvk
D

y

, independent of y and that kvk
D

y

' kvk
L

y

.
Hence, on setting v = L�1

y

u, we obtain that kL�1

y

uk
�g . kuk.

Now, for u
1

and u
2

as in the hypothesis,

kL�1

x

u
1

� L�1

y

u
2

k  kL�1

x

u
1

� L�1

y

u
1

k+ kL�1

y

(u
1

� u
2

)k

. ⌅(x, y)ku
1

k+ ku
1

� u
2

k.

⇤

With the aid of these two lemmas, we improve the regularity from Theorem 4.17 as
follows.

Theorem 6.3. Suppose that (x, y) 7! !
x

(y) 2 C1(M2) and that x 7! !
x

2 Ck(N )
for k � 1. Moreover, suppose that (x, y) 7! ⌘

x

(y) 2 C0(N ⇥M) and that x 7! ⌘
x

2

Cl(N ) for l � 0. If at x 2 N , '
x

solves (F) with
´
M '

x

dµ
g

=
´
M ⌘ dµ

g

= 0. Then,
x 7! h⌘

x

,'
x

i 2 Cmin{k,l}(M).



GEOMETRIC SINGULARITIES AND A FLOW TANGENT TO THE RICCI FLOW 31

Proof. First, suppose that l = 0. Then, we show that x 7! h⌘
x

,'
x

i 2 C0(N ). For
that, note that

|h⌘
x

,'
x

i � h⌘
y

,'
y

i|  |h⌘
x

� ⌘
y

,'
x

i|+ |h⌘
y

,'
x

� '
y

i|

 k⌘
x

� ⌘
y

kk'
x

k+ k⌘
y

kk'
x

� '
y

k.

Since we assume that (x, z) 7! ⌘
x

(z) 2 C0(N ⇥ M), the same is true for (x, z) 2

U ⇥ M, where U ⇢ N is a compact set with nonempty interior containing x and
hence, h⌘

x

� ⌘
y

i can be made small. Now, the term '
x

= L�1

x

✓⌘
x

�

�
M L�1

x

✓⌘
x

dµ
g

and hence, it su�ces to show that kL�1

x

✓⌘
x

� L�1

y

✓⌘
y

k can be made small. For this,
note that

kL�1

x

✓⌘
x

� L�1

y

✓⌘
y

k . ⌅(x, y)k⌘
x

k+ k⌘
x

� ⌘
y

k

by Lemma 6.2, and hence, this term can also be made small when y is su�ciently
close to x.

Next, we note that by bootstrapping, it su�ces to consider the situation where
k, l = 1 and we note that Theorem 4.17 gives us that x 7! h⌘

x

,'
x

i has a bounded
derivative. All we need to prove is that this derivative is continuous.

We recall that, via the product rule for the weak derivative, we write inside a chart,

(@
i

h⌘
x

,'
x

i)(v) = h(@
i

⌘
x

,'
x

i+ h⌘
x

, @
i

'
x

i,

and hence, we show that each term of the right hand side is continuous.

Fix x, y 2 U ⇢ M open , where ( , Ũ) is a chart with U ⇢ Ũ compact. Then, we
have

h@
i

⌘
x

,'
x

i � h@
i

⌘
y

,'
y

i  h@
i

⌘
x

� @
i

⌘
y

,'
x

i+ h@
i

⌘
y

,'
x

� '
y

i.

Now, since x 7! ⌘
x

is C1 by assumption, k@
i

⌘
x

� @
i

⌘
y

k can be made small.

In the continuity case, we have already shown that k'
x

� '
y

k can be made small,
so we consider the next term

h⌘
x

, @
i

'
x

i � h⌘
y

, @
i

'
y

i = h⌘
x

� ⌘
y

, @
i

'
x

i+ h⌘
y

, @
i

'
x

� @
i

'
y

i.

Now, it is easy to see that the first term on the right hand side is trivially continuous
because k⌘

x

� ⌘
y

k can be made small. The continuity for the second term follows
by showing that k@

i

'
x

� @
i

'
y

k can be made small. Recall that @
i

'
x

= L�1

x

✓⌘0
x,i

��
M L�1

x

✓⌘0
x,i

, where ⌘0
x,i

= @
i

⌘
x

�(@
i

D
x

)'
x

. Thus, it su�ces to prove that kL�1

x

✓⌘0
x,i

�

L�1

y

✓⌘0
y,i

k can be made small. By Lemma 6.2, we have that

kL�1

x

✓⌘
x,i

� L�1

y

✓⌘
y,i

k . ⌅(x, y)k⌘
x,i

k+ kL�1

y

✓(⌘
x,i

� ⌘
y,i

)k.

Hence, we are reduced to proving that k⌘0
x,i

� ⌘0
y,i

k can be made small.

Now, note that (@
i

D
x

)'
x

= (@
i

D
x

)L�1

x

✓⌘
x

since (@
i

D
x

)(
�
M L�1

x

✓⌘
x

dµ
g

) = 0 and
thus,

k⌘0
x,i

� ⌘0
y,i

k  k@
i

⌘
x

� @
i

⌘
y

k+ k(@
i

D
x

)L�1

x

✓⌘
x

+ (@
i

D
y

)L�1

y

✓⌘
y

k.
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It is easy to see that the first term can be made small, so we only need to show that
the second term can be made small. Now,

k(@
i

D
x

)L�1

x

✓⌘
x

� (@
i

D
y

)L�1

y

✓⌘
y

k

 k[(@
i

D
x

)� (@
i

D
y

)]L�1

x

✓⌘
x

k+ k(@
i

D
y

)(L�1

x

✓⌘
x

� L�1

y

✓⌘
y

)k,

and by Lemma 6.1, we have that

k[(@
i

D
x

)� (@
i

D
y

)]L�1

x

✓⌘
x

k . ⌅(x, y)kL�1

x

✓⌘
x

k

�g . ⌅(x, y)k⌘
x

k.

For the remaining term, as in the proof of Lemma 6.2, we write,

L�1

x

✓⌘
x

� L�1

y

✓⌘
y

= L�1

x

(L
x

� L
y

)L�1

y

✓⌘
x

+ L�1

y

✓(⌘
x

� ⌘
y

),

and since k(@
i

D
y

)L�1

x

k . 1 uniformly in x and y inside U and since U is compact,
we have that

k(@
i

D
y

)(L�1

x

⌘
x

� L�1

y

✓⌘
y

)k . k(L
x

� L
y

)L�1

y

✓⌘
x

k+ kL�1

y

✓(⌘
x

� ⌘
y

)k

. ⌅(x, y)kL�1

y

✓⌘
x

k

�g + k⌘
x

� ⌘
y

k . ⌅(x, y)k⌘
x

k+ k⌘
x

� ⌘
y

k.

This is again a quantity that can be made small. This shows that x 7! ⌘
x,i

is
continuous and to show that the min {k, l} derivative can be made continuous for
k, l � 1 is obtained via a bootstrapping of this procedure. ⇤
Remark 6.4. Showing higher derivatives are continuous is a rather tedious task.
One considers the expression solving for a second derivative (when there is su�cient
regularity in x 7! !

x

and x 7! ⌘
x

) given by

D
x

@
j

@
i

'
x

= @
j

@
i

⌘
x

� (@
j

@
i

D
x

)'
x

� (@
i

D
x

)@
j

'
x

� (@
j

D
x

)@
i

'
x

.

The first term on the right hand side can be handled easily. The second term follows
from a similar estimate as in Theorem 6.3, because (@

j

@
i

D
x

) is a divergence form
operator � div

g

(@
j

@
i

!
x

)ru, whose coe�cients satisfy �⇤
U

 !
x

(y)  ⇤
U

for x, y 2

U , an open neighbourhood of x for which U ⇢ N . The remaining two terms can also
be handled similarly on writing @

j

'
x

and @
i

'
x

as a solution via the resolvent terms
L�1

x

to relate back to ⌘0
x,i

and to ⌘
x

.

As a corollary, we obtain an improvement of the regularity of the flow for C1 heat
kernels. Note that, unlike in Theorem 3.1, we can allow for C1 heat kernels. This is
the statement of Theorem 3.2.

6.2. Heat kernel regularity in terms of the regularity of the metric. In this
subsection, we relate the regularity of the heat kernel to the regularity of the metric.
We first prove the following important localisation lemma.

Lemma 6.5. Suppose that div
g

Aru = f , for u 2 W1,2(M) and f 2 L2(M). Then,
for each x 2 M, there is an r > 0 and a chart  : U ! B

r

(x0) where x0 =  (x) and
such that on ⌦ =  �1(B

1/2r

(x0)),

div
g̃,⌦

AB✓ru = ✓f

in L2(⌦, g̃), where g̃ =  ⇤�, the pullback of the Euclidean metric in B
r

(x0), dµ
g

=
✓ dg̃ and g̃(Bu, v) = g(u, v). Moreover, this equation holds if and only if

divRn

,B1/2r(x
0
)

ÃB̃✓̃rũ = ✓̃f̃ ,
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where ⇠̃ = ⌘(⇠ �  �1), where ⌘ is a smooth cuto↵ which is 1 on B
1/2r

(x), and 0
outside B

3/4r

(x).

Proof. Fix v 2 C1
c

(⌦). Then, for u 2 D(div
g

), we have that

hdiv
g

u, vi = hu,rvi = hu,rvi
L

2
(⌦,g)

= hB✓u,rvi
L

2
(⌦,g̃)

.

Since this holds for any such v 2 C1
c

(⌦), it follows that B✓u 2 D(div
g̃,⌦

) and hence

hB✓u,rvi
L

2
(⌦,g̃)

= h✓�1 div
g̃,⌦

B✓u, vi
L

2
(⌦,g)

.

Thus, div
g

Aru = f implies that hdiv
g

Aru, vi = hf, vi for all v 2 C1
c

(⌦) and
hence, div

g̃,⌦

AB✓ru = ✓f in L2(⌦, g̃). Since ⌘ and ' induces a bijection between
C1

c

(B
1/2r

) and C1
c

(⌦), it follows that divRn

,B1/2r(x
0
)

ÃB̃✓̃rũ = ✓̃f̃ . ⇤

When the metric is su�ciently regular (i.e. at least Lipschitz), we are able to write
solutions to the Laplace equation in non-divergence form.

Lemma 6.6. Let ( , U) be a chart near x with  (U) = B
1/2r

(x0), and suppose that
g 2 Ck,↵(U), where ↵ = 1 if k = 0 and otherwise, for k � 1, ↵ 2 [0, 1]. Then, inside
 (U),

g�
g

u(y) = Ãij(y)@
i

@
j

ũ(y) + @
j

(Ãij ✓̃)@
i

ũ,

for almost-every y 2 B
1/2r

(x0), where ⇠̃ is the notation from Lemma 6.5. The coe�-

cients Ãij, ✓̃, @
j

(Ãij) 2 Ck�1,↵ for k � 1. Otherwise, Ãij, ✓̃, @
j

(Ãij) 2 L1(B
1/2r

(x0)).

Proof. This is simply a direct consequence of Theorem 8.8 in [15]. This formula is
precisely the one written in (8.18) in this theorem. ⇤

Next, we obtain the first increase in regularity which allows us to initiate a boot-
strapping procedure.

Lemma 6.7. Let ( , U) be a chart near x and  (U) = B
r

. Suppose that g 2 Ck,↵(U)
for k � 1 and ↵ 2 [0, 1] and suppose that u 2 W1,2(M) and f 2 L2(M) satisfy
�

g

u = f . If f̃ 2 C↵(B
r

(x0)), then ũ 2 C2,↵(B
1/4r

(x0)). Moreover, u|
⌦

2 C2,↵(⌦)
where ⌦ =  �1(B

1/4r

(x0)).

Proof. First, set r0 = 1/2r, and invoke the localisation from Lemma (6.5). Note
that this equation divRn

,B3/4r0 (x
0
)

˜AB✓rũ = ✓̃f is in divergence form, and since ✓̃f 2

C↵(B
3/4r

0(x0)), we have that ✓̃f 2 Lq(B
3/4r

0(x0)) for any q > n. Hence, we can
invoke the elliptic Harnack estimate in Theorem 8.22 in [15] to obtain that ũ 2

C�(B
1/2r

0(x0)) for some � > 0.

Next, we invoke Lemma 6.6, to write

Ãij(y)@
i

@
j

ũ(y) + @
j

(Ãij ✓̃)@
i

ũ = ✓̃f̃ ,

inside B
1/2r

0(x0). Then, note that ũ solves

Lũ = ✓̃f̃ , with ũ = ' 2 C0(@B
3/8r

0(x0)),
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where L has Ck�1,↵ coe�cients and ✓̃f̃ 2 C↵(B
3/8r

0(x0)) simply on setting ' = ũ on
@B

3/8r

0(x0) ⇢ B
1/2r

0(x0) on which we have already proved that ũ is C� and hence,
continuous.

Thus, we can invoke Theorem 6.13 in [15] to obtain that ũ 2 C2,↵(B
1/2r

0(x0)). By
the definition of ũ, and on noting that r0 = 1/2r, the conclusions for u|

⌦

follow. ⇤

With these tools in hand, we prove the following main theorem of this section. By
�0 we denote the a priori regularity of the heat kernel obtained from Theorem 5.1.

Theorem 6.8. Let g 2 Ck,↵(N ), where ? 6= N is an open set and where k � 1 and
↵ 2 [0, 1]. Then, ⇢g

t

2 Ck+1,�(N 2),where � = min {↵, �0
}.

Proof. First, we know that the heat kernel exists and that it is at least C�

0
for some

�0 > 0 by Theorem 5.1.

Fix z 2 M and set u(y) = ⇢g

t

(y, z) and f(y) = @
t

⇢g

t

(y, z). Now, fix ( , U), a chart
near x 2 N so that U ⇢ N and B

r

(x0) =  (U)

We proceed by applying Theorem 6.17 in [15]. Define � = min {�0,↵}. First, let
us apply the initial bootstrapping lemma, Lemma 6.7 to conclude that, in fact,
u|

⌦

2 C2,�(⌦), where ⌦ =  �1(B
1/4r

(x0)). This shows that that u 2 C2,�(N ) and
by the symmetry of the heat kernel, we obtain that ⇢g

t

2 C2,�(N 2). Thus, we have
shown that the conclusion holds for k = 1.

Now, in the case that k = 2, we have that the operator L as defined in Lemma
6.7 has C1,↵-coe�cients. Therefore, since we have that u|

⌦

, f |
⌦

2 C2,�(⌦) and, in
particular, u|

⌦

, f |
⌦

2 C1,�(⌦) by what we have just done, Theorem 6.17 in [15]
yields that u|

⌦

2 C3,�(⌦).

Now, to proceed by induction, suppose we have that u 2 Ck�1,� and the metric
g 2 Ck,↵. Then, f 2 Ck�1,� and the coe�cients of L are Ck�1,↵. Hence, Theorem
6.17 in [15] gives that u|

⌦

2 Ck+1,�(⌦). That is, ⇢g

t

2 Ck+1,�(N 2). ⇤

7. RCD(K,N) spaces and singularities

In this section, we first demonstrate that the flow defined by (GM) is equal to the
flow that Gigli and Mantegazza define for RCD(K,N) spaces in [13]. In fact, for
a smooth initial metric, they verify this fact in their paper. We ensure that this is
true in our more general setting.

We then consider the flow defined as (GM) on manifolds with geometric singularities
away from the singular region. The correspondence we establish between this and
the flow of RCD(K,N) defined by Gigli-Mantegazza then allows us to assert that
this flow can be described by an evolving metric tensor away from the singular region
for certain g

t

-admissible points.
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7.1. Correspondence to the flow for RCD(K,N) spaces. First, we recall some
terminology that will be essential for the material we present here. Let (X , d, µ) be
a compact measure metric space, and denote set of probability measures by P(X ).
This set can be made into a metric space under

W
2

(⌫,�)2 = inf

⇢ˆ
X⇥X

d(x, y)2 d⇡ : ⇡ is a transport map from ⌫ to �

�

,

where by transport map, we mean that ⇡(A⇥X ) = ⌫(A) and ⇡(X⇥B) = �(B). The
metric W

2

is the Wasserstein metric and the space (P(X ),W
2

) is the Wasserstein
space. An important feature is that, when d is a length space, so is (P(X ),W

2

) and
when d is a geodesic space, then the same property holds for (P(X ),W

2

).

In their paper [13], the authors demonstrate that the flow defined by (GM) for initial
smooth metrics coincides with a flow which they define as a heat-flow in Wasserstein
space. Namely, they demonstrate that

g
t

(�0
s

, �0
s

) = |⌫̇
s

|,

where ⌫
s

= ⇢g

t

(�
s

, · ) dµ and where |⌫̇
s

| is the W
2

metric speed of the curve ⌫
s

.

In the following theorem, we verify this is indeed the case when (M, g) with g rough
and inducing a distance metric satisfying an RCD(K,N) condition. The proof is
essentially the same as in the proof of Theorem 3.6 in [13], which in turn relies on
the uniqueness of solutions of the continuity equation stated as Theorem 2.5 in [13],
when the underlying space is a Riemannian manifold with a smooth metric. The
proof of their Theorem 2.5 fails to hold in our setting as they resort to Euclidean
results via the Nash embedding theorem which is unable given the low regularity of
our metric.

Moreover, we note that the set N may not be convex with respect to g
t

. Recall
that two points x, y 2 M are g

t

-admissible if for every absolutely continuous curve
� : I ! M with �(0) = x and �(1) = y, there is another absolutely continuous
curve �0 : I ! M with �0(s) 2 N for s-a.e. for which `

d

t

(�0)  `
d

t

(�) where

`
d

t

(�) =

ˆ
M

|�̇(s)|
d

t

ds,

and where |�̇(s)|
d

t

is the metric speed of the curve computed with respect to d
t

.
With this terminology at hand, we present the following important theorem.

Theorem 7.1. Let (M, g) be a smooth manifold with a rough metric and suppose
that g induces a length structure such that (M, d

g

, dµ
g

) is RCD(K,N). Let g
t

be
the flow given by Theorem 3.1 on an open subset ? 6= N . Suppose s 7! �

s

2 M

is an absolutely continuous curve between two admissible points x, y 2 M for which
�(s) 2 N for s-a.e. Fix t > 0 and define

⌫
s

:= ⇢g

t

(�
s

, · )dµ
g

= H
t

(⌫
0,�

s

) ,

where H
t

denotes the heat flow and ⌫
0,�

s

= �
�

s

, the delta measure at �
s

. Then,
s 7! ⌫

s

is absolutely continuous with respect to W
2

and for s-a.e.,

g
t

(�̇
s

, �̇
s

) = |⌫̇
s

|.
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Moreover,

d
t

(x, y)2 = inf
�(s)2N s�a.e.

ˆ
M

|�̇
s

|

2

g

t

ds.

Proof. The absolute continuity of ⌫
s

follows from absolute continuity of �
s

and the
contraction property of the heat flow in spaces with curvature bounded below. From
Theorem 3.1, we know that there exist a family  

t,�

s

,�̇

s

2 W1,2(M) solving the
following equation (in the sense of distributions)

� div
g

⇢g

t

(�
s

, · )r 
t,�

s

,�̇

s

= d
x

(⇢g

t

(�
s

, · ))(�̇
s

)

Now, we note that ⌫
s

has bounded compression i.e. ⌫
s

⌧ dµ
g

and since we assume
that (M, d

g

, dµ
g

) is an RCD(K,N) space, the Sobolev space W1,2(M) is Hilbert.
So applying Proposition 4.5 in [12], we have

|⌫̇
s

| = kr 
t,�

s

,�̇

s

k

L

2
(⌫

s

)

,

which in turn means that

|⌫̇
s

|

2 =

ˆ
M

|r 
t,�

s

,�̇

s

|

2d⌫
s

= g
t

(�̇
s

, �̇
s

) .

As a direct consequence, we get

d2

g

t

(x, y) = inf
�

⇢ˆ
1

0

|⌫̇
s

|

2 ds : �(s) 2 N s-a.e. joining x and y

�

Notice that the right hand side the equation above is the definition of distance given
by the flow (GM). So the proof is complete. ⇤

With this theorem at hand, and on collating results we have obtained previously,
we give the following proof of Theorem 1.1.

Proof of Theorem 1.1. Since we assume that (M, d
g

, dµ
g

) is an RCD(K,N) space,
we know from Theorem 7.3 in [2] that ⇢g

t

2 C0,1(M2). Moreover, we assume that
g 2 Ck(M \ S) for k � 1, and since S $ M is closed, M \ S is open, and so we
apply Theorem 6.8 to obtain that ⇢g

t

2 Ck+1(M2). By the assumptions we’ve made,
k+1 � 2 and hence, we invoke Theorem 3.1 to obtain the conclusion. Moreover, by
Theorem 7.1, we are able to assert that d

t

(x, y) is induced by g
t

for g
t

-admissible
points x, y 2 M. ⇤

7.2. Witch’s hats and boxes. In this section, we prove Corollary 3.6 and 3.7 from
§3.2.

First, we note the following theorem that will make our constructions easier.

Proposition 7.2. The gluing of two Alexandrov spaces via an isometry between
their boundaries produces an Alexandrov space with the same lower curvature bound.
Moreover, such a space is an RCD(K,N) space.
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Proof. The first part of the Proposition concerning the gluing of Alexandrov spaces
is in [23] by Petrunin. The curvature bounds of Lott-Sturm-Villani follow from [24]
by the same author. That an Alexandrov space is RCD is due to [17] by Kuawe,
Machigashira, and Shioya. ⇤

With this tool in hand, let us first consider the case of the box. Let

Bn = @

"

�

s

1

2(n+ 1)
,

s

1

2(n+ 1)

#

n+1

and G : Bn

! Sn

⇢ Rn+1 be the radial projection map defined by

G(x) =
x

|x|
.

We have Bn

⇢ Bn

0

(1) which means that G is an expansion and hence

d
B

n (x, y)  d
S

n (G(x), G(y)) 
p

2(n+ 1)d
B

n (x, y) .

The second inequality follows from the fact that Sn ⇢ [�1, 1]n+1. Putting these
together, we deduce that G�1 : Sn

! Bn is Lipschitz and that the Lipschitz constant
of G�1 satisfies Lip(G�1)  1.

Immediately, by Proposition 7.2, we obtain the proof of Corollary 3.7.

Proof of Corollary 3.7. By Proposition 7.2, we obtain thatBn is an RCD(0, n) space.
Moreover, it is easy to see that the Riemannian metric induced via G coming from
the sphere is smooth on B away from the edges and corners. Thus, we can apply
Theorem 1.1 to obtain that the Gigli-Mantegazza flow for d

t

is given, away from
edges and the corners, by a smooth metric g

t

. ⇤

Next, let us consider the Witch’s hat sphere. We follow the Example 3.2 from [18]
Let ' : [0, ⇡] ! [0, 2] be a smooth cut-o↵ function with

'(r) = 0, for r 2
h

0,
⇡

4

i

and '(r) = 1, for r 2



3⇡

4
, ⇡

�

and such that

|'0(r)|  1/10

Let

f(r) := '(r)

✓

⇡ � r

⇡

◆

+ (1� '(r)) sin(r)

Now take the metric g
witch

= dr2 + f(r)2g
S

n .

The identity map Id : (Sn+1, g
S

n+1) ! (Sn+1, g
witch

) is bi-Lipschitz as a map between
two metric spaces and possesses a geometric conical singularity at one pole.
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Proof of Corollary 3.6. The cone is obtained by gluing the following pieces via isom-
etry between their boundaries. Let

A
1

=
h

0,
⇡

4

i

⇥

f

Sn, A
2

=



⇡

4
,
3⇡

4

�

⇥

f

Sn and A
3

=



3⇡

4
, ⇡

�

⇥

f

Sn.

Then, A
1

is a spherical cap with constant sectional curvature equal to 1. Hence, it
obviously is an Alexandrov space. Furthermore, A

2

is a smooth warped product with
bounded sectional curvature and therefore it is also Alexandrov. Lastly, A

3

is the
standard cone with cross sectional diameter < ⇡ which is known to be Alexandrov
by [7]. So, by Proposition 7.2, we obtain that it is an RCD(K,N) space.

Moreover, since the metric g
witch

has a geometric conical singularity at one point,
and it is smooth away from that point, by Theorem 1.1, we obtain that the Gigli-
Mantegazza flow d

t

is induced everywhere but at the singularity by a smooth Rie-
mannian metric g

t

. ⇤

References

1. D. Albrecht, X. Duong, and A. McIntosh, Operator theory and harmonic analysis, Instructional
Workshop on Analysis and Geometry, Part III (Canberra, 1995), Proc. Centre Math. Appl.
Austral. Nat. Univ., vol. 34, Austral. Nat. Univ., Canberra, 1996, pp. 77–136. MR 1394696
(97e:47001)

2. L. Ambrosio, N. Gigli, A. Mondino, and T. Rajala, Riemannian Ricci curvature lower bounds
in metric measure spaces with �-finite measure, ArXiv e-prints (2013).
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