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8 A Priori Estimates and the Geometry of
the Monge-Ampere Equation

after L. Caffarells
A summary written by Sajjad Lakzian

Abstract
We will very briefly touch on Caffarelli’s regularity theory for fully
nonlinear PDE and the geometry and regularity of the Monge-Ampere
equation.

8.1 Introduction

The well known regularity results for small perturbation of linear equations
are as follows:

(I) [Cordes-Nienberg Type Estimates|. Let 0 < o < 1 and u a
bounded solution on By of Lu = a;;Djju = f, |ai; — ;] < do(a) small
enough, and f bounded; then,

lulleres, o) < C (lullz=s) + [1fllz=) - (1)

(IT) [Calderon-Zygmund]. if f € L? for some 1 < p < oo and dy(p)
small enough, then

lullwzoes, ) < C (llullz=m) + [If]l) - (2)
III) [Schauder]. If a;; and f are of class C* then,
J
lullc2as, ) < C (lullz=m) + [1fllce) - (3)

Caffarelli [1] has generalized these type of estimates to Fully nonlinear
uniformly elliptic PDEs.

8.2 Fully Nonlinear Uniformly Elliptic PDE
The equation is of the form

F(D*,z) = f(x) (4)

Uniform ellipticity in D? of equation 4 means that there exist A and A
such that for any matrix N € M,,,, and any N € ST we have

0<MN|M|| < F(N+ M,z)— F(N,z) < A||M|| (5)
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Definition 1 (Viscosity Solution). The continuous function w is called a
C?-viscosity solution of (4) if for any C*—subsolution (resp. supersolution)
¢, u — ¢ cannot have an interior minimum (resp. mazximum,).

Let S denote the symmetric matrices then, S(z), the oscillation of F' in
the variable z is given by:

32 = sup FOL2) = FOM,0)

LA TTVT] ©)

Caffarelli’s results are as follows:

8.3 Cafirelli’s Main Results

Theorem 2 (W?? Regularity). Let u be a bounded viscosity solution of
F(D?u,x) = f(z) in By and assume that solutions w of the Dirichlet problem

[ F(D*u,z)=0 in B,
f<x>{w:wo in 0B,

satisfy he interior apriori estimate
|lwllcras, ) < Cr?||wl| L=(o8,) (7)

Let n < p < oo and assume that f € L” and for some 6 = (p) suficiently
small

sup fi(z) < 6(p) (8)
Then u|Bl/2 is in W?P and
lullw2(s,,,) < C (Sup Jul + ||f||LP) . (9)
0B

Theorem 3 (C** Regularity). Assume that solutions w to the equation
F(D*u,w) =0 (10)
in B, satisfy the a priori estimate

lwllcras, ) < Cr™ ) |wl| Lo (s,) (11)
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Then for any 0 < a < & there exists 0 = 0(«) so that if
B (x)dx < 6 (12)
B,

and
f |f(z)|"dx < Cyrla-bn (13)
then any bounded solution u of

F(D*u,z) = f(x) (14)

in B,, is C* at the origin. That is, there exist a linear function | such that
forr <rg

lu — 1| < Cyr'te (15)

and
[l]]er < Cs (16)

with
Oy, C3 < C’(oz)rg(Ha) sup |u| + C’ll/n (17)

70

Theorem 4 (C** Regularity). Assume the ezistence of C*% interior a priori
estimates for solutions of

F(D*w+ M,0) =0 (18)
for any M satisfying
F(M,0) = F(0,0)=0. (19)
Then if 0 < a < @&,
f oorae <o (20)
|f(x)|"de < Cre” (21)
B,

and u is a solution of F(D*u,z) = f(z), then, u is C*® at the origin (in the
same sense as above).

These regularity results are proven by exploring Alexander-Bakelman-
Pucci maximum principle and Krylov-Safanov Harnack’s Inequality.
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8.4 Monge-Ampere Equation

We will discuss the solutions to the Monge-Ampere equation, det D;ju = f
and 0 < \; < f < Ay < o0 on a convex set ). MA equation is perhaps the
most famous example of non-uniformly elliptic PDE.

8.5 Geometric Properties, Alexandrov Solutions and
Localization

Solutions to the MA quation are invariant under affine transformations with
the proper renormalization; i.e. if u is a solution and TX = AX + B is an
affine transformation, then

1
w (det T)2/nu(TX) (22)
is also a solution. This means that one may produce new solutions by
"stretching” the graph of v in some directions and ”squeezing” it in other di-
rections (in a way that keeps the Jacobian of Vu fixed) and hence producing
singular solutions.
This fact also tells us that the estimates on the solutions are inevitably
dependent on the geometry of the domain of the definition.

Definition 5 (Generalized (Alexandrov) Solutions). Let v be a Borel mea-
sure on ), an open and convex subset of R". The convex function u € C(Q)
is a generalized solution or Alexandrov solution to the MA equation

det D*u = v (23)

if the MA measure Mu equals v. Mu is defined as follows:

Mu(E) = |0u(E)| (24)

Remark 6. For the MA equation det D*u = f, we takev = fL (L : Lebesque
measure. )

Proposition 7. if f is continuous then every Alezandrov solution wu is also
a viscosity solution.

Lemma 8. If u,v € C(R2), ulsgq = vaq and v > wu in 0, then,

Av() C du(Q) (25)
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Consequences of Lemma 8:

Theorem 9 (Alexandrov Maximum Principle). u : Q@ — R convexr and
u|gy = 0 then,

lu(z)|" < Cp(diamQ)" dist(z,0Q)|0Q| Vo € Q (26)

Lemma 10 (Comparison Principle). Let u,v convex functions on open bounded
convez 2 and u > v on 0. If det D*u < det D*v (in the MA measure sense)
then,

u>wvin § (27)

One key tool in studying MA equation is John’s Lemma:

Lemma 11 (John’s Lemma). For any open bounded convex set O, there exist
an ellipsoid E such that
EcScnlE (28)

hence, there exist an invertible orientation preserving affine transformation

T :R™ — R™ such that T'(S) is normalized i.e. By C T(S) C B,

One immediate consequence is the following: Let u is a strictly convex
solution of MA inequality on €2 then for any = € ' CC Q and t sufficiently
small; Then, if T normalizes the section S(z,p,t), then the normalization,
u* of u given by:

u(y) = (det )" (w(T(y) — u(w) = p(T"(y) —2) =) (29)

solves the MA inequality on T'(S(x, p, t)) with boundary condition u*
0.

IT(S(z,p;t))

Lemma 12. Let Q* be a normalized open convex set i.e. By C Q0 C B,, and
let u* solve
A < det D*u < Ny u*|pg- =0 (30)

(we call u* a normalized solution) then, there constants ¢y, co depending on
A1, Ao such that

O<01§

igI)l*f u*| < ey (31)

Proof. Apply Lemma 10 to w; = A (Jz|> —1)/2 and wy = Ao(|z]* —n?)/2 O
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Another important result is the localization Theorem which will be used
in the proof of compactness theorem and strict convexity of solutions.

Theorem 13 (Localization [2]). Let u be a solution of MA inequality
inside a convex set 2, and let I(x) is a supporting sloe to u. If the convex
set

W = {u(z) = l(x)} (32)

contains more than one point (hence not strictly convex) then it can not have
an extremal point in Q (i.e. this set has to exit the domain of the definition

).

As a consequence of Lemmas 13, we get the compactness for normalized
solutions. [1]

The proof of regularity results uses the properties of the sections of the
solutions i.e. the sets

S(x,p,t) :={y € Q:uly) <ulx)+p.(y—x)+t} where, p € du(x) and t > 0.

(33)
the modulus of convexity is defined to be
w(z,u,t) ;== sup diamS(z,p,t) (34)
peEdu(x)
and
wo = sup w(z,u,t) Q' CcC (35)
zeQ)

8.6 (' Regularity

It is enough to prove the C® regularity of renormalized solutions u with
infou = u(xg) and ulsgg = 0 . Let Cs C R"! be the cone with vertex
(o, u(xp)) and base {u = (1 — B)u(xg)}. Suppose C, is the graph of h,.
Using the compactness result, one can find a universal ¢ for which
hijs < (1 =6)hy (36)

After renormalizing the level surface {u = 27} and iteration, we get:

hor < (1 —6)"hy (37)
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Since u is Lipschitz we have hy (z) < C|z—xo|+u(zg). Letting 27 = 1—6
we get
hy-r(z) < C(27F)z| < C27F (38)
for |z| < (27%)(1==)
By the comparison Lemma 10, we have u(z) < hy-« () as long as hgr(x) <
(1 = 27%)u(zp). This means that if for every =, we pick k that satisfies

-C )2~ D= < o] < ( —
u(zo) )

)27’6(170/) (39)
then,
ho () < (1 — 27)u (o) (40)
And direct computation gives:

/

u(z) — u(xg) < Clz — 20/ where, a = . a - (41)
-«
This shows that for all supporting planes /,,, we have:
sup |u(z) — I, (z)] < Crtte (42)

B(zo,r)

and this will imply that u is C1<.

8.7 Sobolev Regularity

Theorem 14 (Caffarelli [1]). Let u be a convex viscosity solution of the MA
equation on a normalized conver set 0 and u|pg = 0 then,
(I) Vp < o0, 3e = €(p) s.t. if

f—1<e (43)
then,
u € WP (Bys) (44)
and
lillys (s, ) < €O (45)

(II) If f > 0 and is continuous, then u € W?>P (Bl/Q) for any p < o0
and

ey (i,) < Cl0:0) (46)

where o 1s the modulus of continuity of f.
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A consequence is the following theorem:
Theorem 15. f € C* — u € C*“

Main Ideas of the Proof:

Lets consider a particular case: 1 < det Dju <1+ é(p) and we want to
prove that ||u||W2,p(Bl/2) < C(p).

Step 1 Take the section S, = {uv — L < min(u — L) + p} and normal-
ize it by T),. Then approximate (using an approximation lemma as in [1] )
the normalization of u— L by solutions of det D;;w = 1. Notice that w is C**

Step 2 Iterating this approximation at diadic levels © = 2%, one can
show that .
Tt = D, Thyu (47)

1/2 .
where D,,u = (i) Id is a dilation and and 7),u is a transformation of
norm 3 .

Tl s 1 Tmu™ ] < @ (48)

with o = o(e) is as small as we want.

So far we have a normalized solution u on 7),(S, ) with the following
properties:

(a) 1 < det Djju < 1+e. (b) {u= 1} is trapped between B; and B,,. (c)
u is € away from the C** approximation function w that solves det D;jw = 1
and {w =0} = {u =0}

Step 3

Lemma 16. Let F(u—%w) be the convex envelope of u— %w, then, the contact

set C = {I'(u — tw) =u — jw} satisfies:

B
Biz0CL e (49)
| By 2]

in other words, the contact points cover as large a portion of By, as we want.

Corollary 17. At any contact point xq, there exist a plane L,, such that in
all of €2

Leo(x) < (= 5)(w) and Ley(ro) = (u— s)(zo)  (50)
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which means that for any contact point xq, u has a tangent paraboloid by
below of the form

1
Ley + 57l — 2o (51)
Remark 18. If u has a tangent paraboloid by below u > §|ac|2 then u has a
tangent paraboloid by above u < A"~ !|z|* because one can see that a paraboloid

from below puts a uniform bound ||T,|| < X then since det Tp,u = 1, we also
get a bound by below.

Step 4 having controlled tangent paraboloids from above and below =—-
W?2P estimates.
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