Optimal Transport and Applications

Summer School, Lake Arrowhead*

Oct 6th - Oct 11th 2013

Organizers:

Nestor Guillen University of California, Los Angeles, USA

Dimitri Shlyakhtenko University of California, Los Angeles, USA

Christoph Thiele University of California, Los Angeles, USA / University of Bonn, Germany

*supported by NSF grand DMS 1001535 $\,$

Contents

1	Stability in the anisotropic isoperimetric inequality	5
	Marcos Charalambides, UC Berkeley	5
	1.1 The anisotropic isoperimetric inequality	5 6
	1.2 Gromov's proof revisited	0
	1.5 From equality to hear-equality	0
	1.4 Stability in the Drunn-Minkowski inequality	9
2	Hölder regularity of optimal transport maps, and underlying	
	inequalities from convex geometry	11
	Nick Cook, UCLA	11
	2.1 Introduction	11
	2.2 Geometric approach to Lemmas 1 and 4	13
3	A convexity theory for interacting gases and equilibrium	
	crystals	17
	Matías G. Delgadino, UMD	17
	3.1 Introduction \ldots	17
	3.2 Interpolation of Probability Measures	17
	3.3 Displacement Convexity	19
	3.3.1 Applications of Convexity	20
4	Differential equations methods for the Monge-Kantorovich	
	mass transfer problem	22
	Taryn C Flock, UC Berkeley	22
	4.1 Introduction	22
	4.1.1 The Monge problem	22
	4.1.2 The Monge-Kantorovich problem	22
	4.1.3 The Monge-Kantorovich dual problem	23
	4.1.4 Solving the Monge problem	23
	4.2 The p-Laplacian	24
	4.3 Sketch of the construction in $[3]$	24
	4.4 Historical Remark	26
5	Benamou-Brenier's approach for OTT	28
	Augusto Gerolin, Universitá? di Pisa	28
	5.1 Introduction \ldots	28

	5.2	Two Motivations	29
	5.3	Heuristics	30
	5.4	Euler Equation and Optimal Transport	31
	5.5	Geodesic Spaces	32
	5.6	Convex Reformulation of Benamou-Brenier	33
		5.6.1 Dual Formulation	34
6	Pola	ar Factorization and Monotone Rearrangment of Vector-	
	Val	ued Functions	36
	Jord	lan Greenblatt, UCLA	36
	6.1	Introduction	36
	6.2	Monge-Kantorovich problems	38
	6.3	Existence and uniqueness of solutions to the mixed MKP	39
	6.4	Proof of polar factorization theorem	40
7	An	Elementary Introduction to Monotone Transportation	42
	Paat	ta Ivanisvili, MSU	42
	7.1	Introduction	42
	7.2	A construction of the Brenier Map	43
	7.3	The Brunn–Minkowski Inequality	44
	7.4	The Marton–Talagrand Inequality	45
8	A P	riori Estimates and the Geometry of the Monge-Ampère	
	Equ	lation	47
	Sajj	ad Lakzian, CUNY	47
	8.1	Introduction	47
	8.2	Fully Nonlinear Uniformly Elliptic PDE	47
	8.3	Caffrelli's Main Results	48
	8.4	Monge-Ampère Equation	50
	8.5	Geometric Properties, Alexandrov Solutions and Localization .	50
	8.6	$C^{1,\alpha}$ Regularity	52
	8.7	Sobolev Regularity	53
9	Par	tial differential equations and Monge-Kantorovich mass	
	trar	nsport	56
	Tau	Shean Lim, UW-Madison	56
	9.1	Quick survey on Monge-Kantorovich problem	56
	9.2	Case for $c(x, y) = \frac{1}{2} x - y ^2$	57
		· · <u> </u>	

8 A Priori Estimates and the Geometry of the Monge-Ampère Equation

after L. Caffarelli A summary written by Sajjad Lakzian

Abstract

We will very briefly touch on Caffarelli's regularity theory for fully nonlinear PDE and the geometry and regularity of the Monge-Ampère equation.

8.1 Introduction

The well known regularity results for small perturbation of linear equations are as follows:

(I) [Cordes-Nienberg Type Estimates]. Let $0 < \alpha < 1$ and u a bounded solution on B_1 of $Lu = a_{ij}D_{ij}u = f$, $|a_{ij} - \delta_{ij}| \leq \delta_0(\alpha)$ small enough, and f bounded; then,

$$||u||_{C^{1,\alpha}(B_{1/2})} \le C\left(||u||_{L^{\infty}(B_1)} + ||f||_{L^{\infty}}\right).$$
(1)

(II) [Calderon-Zygmund]. if $f \in L^p$ for some $1 and <math>\delta_0(p)$ small enough, then

$$||u||_{W^{2,p}(B_{1/2})} \le C\left(||u||_{L^{\infty}(B_1)} + ||f||_{L^p}\right).$$
(2)

(III) [Schauder]. If a_{ij} and f are of class C^{α} then,

$$||u||_{C^{2,\alpha}(B_{1/2})} \le C\left(||u||_{L^{\infty}(B_1)} + ||f||_{C^{\alpha}}\right).$$
(3)

Caffarelli [1] has generalized these type of estimates to Fully nonlinear uniformly elliptic PDEs.

8.2 Fully Nonlinear Uniformly Elliptic PDE

The equation is of the form

$$F(D^2u, x) = f(x) \tag{4}$$

Uniform ellipticity in D^2 of equation 4 means that there exist λ and Λ such that for any matrix $N \in M_{n \times n}$ and any $N \in S^+$ we have

$$0 < \lambda ||M|| < F(N+M,x) - F(N,x) \le \Lambda ||M||$$
(5)

Definition 1 (Viscosity Solution). The continuous function u is called a C^2 -viscosity solution of (4) if for any C^2 -subsolution (resp. supersolution) ϕ , $u - \phi$ cannot have an interior minimum (resp. maximum).

Let S denote the symmetric matrices then, $\beta(x)$, the oscillation of F in the variable x is given by:

$$\beta(x) = \sup_{M \in S} \frac{F(M, x) - F(M, 0)}{||M||}$$
(6)

Caffarelli's results are as follows:

8.3 Caffrelli's Main Results

Theorem 2 ($W^{2,p}$ Regularity). Let u be a bounded viscosity solution of $F(D^2u, x) = f(x)$ in B_1 and assume that solutions ω of the Dirichlet problem

$$f(x) = \begin{cases} F(D^2u, x) = 0 & \text{in } B_r \\ \omega = \omega_0 & \text{in } \partial B_r \end{cases}$$

satisfy he interior apriori estimate

$$||\omega||_{C^{1,1}(B_{r/2})} \le Cr^{-2}||\omega||_{L^{\infty}(\partial B_r)}$$
(7)

Let $n and assume that <math>f \in L^p$ and for some $\theta = \theta(p)$ suficiently small

$$\sup_{B_1} \beta(x) \le \theta(p) \tag{8}$$

Then $u|_{B_{1/2}}$ is in $W^{2,p}$ and

$$||u||_{W^{2,p}(B_{1/2})} \le C\left(\sup_{\partial B_1} |u| + ||f||_{L^p}\right).$$
(9)

Theorem 3 ($C^{1,\alpha}$ Regularity). Assume that solutions ω to the equation

$$F(D^2 u, \omega) = 0 \tag{10}$$

in B_r satisfy the a priori estimate

$$||\omega||_{C^{1,\bar{\alpha}}(B_{r/2})} \le Cr^{-(1+\bar{\alpha})}||\omega||_{L^{\infty}(B_{r})}$$
(11)

Then for any $0 < \alpha < \overline{\alpha}$ there exists $\theta = \theta(\alpha)$ so that if

$$\int_{B_r} \beta^n(x) dx \le \theta \tag{12}$$

and

$$\int_{B_r} |f(x)|^n dx \le C_1 r^{(\alpha-1)n} \tag{13}$$

then any bounded solution u of

$$F(D^2u, x) = f(x) \tag{14}$$

in B_{r_0} is $C^{1,\alpha}$ at the origin. That is, there exist a linear function l such that for $r < r_0$

$$|u-l| \le C_2 r^{1+\alpha} \tag{15}$$

and

$$||l||_{C^1} \le C_3$$
 (16)

with

$$C_2, C_3 \le C(\alpha) r_0^{-(1+\alpha)} \sup_{B_{r_0}} |u| + C_1^{1/n}$$
(17)

Theorem 4 ($C^{2,\alpha}$ Regularity). Assume the existence of $C^{2,\bar{\alpha}}$ interior a priori estimates for solutions of

$$F(D^2\omega + M, 0) = 0 \tag{18}$$

for any M satisfying

$$F(M,0) = F(0,0) = 0.$$
 (19)

Then if $0 < \alpha < \overline{\alpha}$,

$$\oint_{B_r} \beta^n dx \le C r^{\alpha n},\tag{20}$$

$$\oint_{B_r} |f(x)|^n dx \le Cr^{\alpha n} \tag{21}$$

and u is a solution of $F(D^2u, x) = f(x)$, then, u is $C^{2,\alpha}$ at the origin (in the same sense as above).

These regularity results are proven by exploring Alexander-Bakelman-Pucci maximum principle and Krylov-Safanov Harnack's Inequality.

8.4 Monge-Ampère Equation

We will discuss the solutions to the Monge-Ampère equation, det $D_{ij}u = f$ and $0 < \lambda_1 \leq f \leq \lambda_2 < \infty$ on a convex set Ω . MA equation is perhaps the most famous example of non-uniformly elliptic PDE.

8.5 Geometric Properties, Alexandrov Solutions and Localization

Solutions to the MA quation are invariant under affine transformations with the proper renormalization; i.e. if u is a solution and TX = AX + B is an affine transformation, then

$$w = \frac{1}{(\det T)^{2/n}} u(TX)$$
(22)

is also a solution. This means that one may produce new solutions by "stretching" the graph of u in some directions and "squeezing" it in other directions (in a way that keeps the Jacobian of ∇u fixed) and hence producing singular solutions.

This fact also tells us that the estimates on the solutions are inevitably dependent on the geometry of the domain of the definition.

Definition 5 (Generalized (Alexandrov) Solutions). Let ν be a Borel measure on Ω , an open and **convex** subset of \mathbb{R}^n . The convex function $u \in C(\Omega)$ is a generalized solution or Alexandrov solution to the MA equation

$$\det D^2 u = \nu \tag{23}$$

if the MA measure Mu equals ν . Mu is defined as follows:

$$Mu(E) = |\partial u(E)| \tag{24}$$

Remark 6. For the MA equation det $D^2u = f$, we take $\nu = f\mathcal{L}$ (\mathcal{L} : Lebesque measure.)

Proposition 7. if f is continuous then every Alexandrov solution u is also a viscosity solution.

Lemma 8. If $u, v \in C(\overline{\Omega})$, $u|_{\partial\Omega} = v_{\partial\Omega}$ and $v \ge u$ in Ω , then,

$$\partial v(\Omega) \subset \partial u(\Omega) \tag{25}$$

Consequences of Lemma 8:

Theorem 9 (Alexandrov Maximum Principle). $u : \Omega \to \mathbb{R}$ convex and $u|_{\partial u} = 0$ then,

$$|u(x)|^{n} \leq C_{n}(diam\Omega)^{n-1}dist(x,\partial\Omega)|\partial\Omega| \quad \forall x \in \Omega$$
(26)

Lemma 10 (Comparison Principle). Let u, v convex functions on open bounded convex Ω and $u \ge v$ on $\partial \Omega$. If det $D^2u \le \det D^2v$ (in the MA measure sense) then,

$$u \ge v \quad in \quad \Omega \tag{27}$$

One key tool in studying MA equation is John's Lemma:

Lemma 11 (John's Lemma). For any open bounded convex set O, there exist an ellipsoid E such that

$$E \subset S \subset nE \tag{28}$$

hence, there exist an invertible orientation preserving affine transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ such that T(S) is normalized i.e. $B_1 \subset T(S) \subset B_n$

One immediate consequence is the following: Let u is a strictly convex solution of MA inequality on Ω then for any $x \in \Omega' \subset \Omega$ and t sufficiently small; Then, if T normalizes the section S(x, p, t), then the normalization, u^* of u given by:

$$u^*(y) := (\det T)^{2/n} \left(u(T^{-1}(y)) - u(x) - p(T^{-1}(y) - x) - t \right)$$
(29)

solves the MA inequality on T(S(x, p, t)) with boundary condition $u^*\Big|_{\partial T(S(x, p, t))} = 0.$

Lemma 12. Let Ω^* be a normalized open convex set i.e. $B_1 \subset \Omega^* \subset B_n$ and let u^* solve

$$\lambda_1 \le \det D^2 u \le \lambda_2 \quad u^*|_{\partial\Omega^*} = 0 \tag{30}$$

(we call u^* a normalized solution) then, there constants c_1, c_2 depending on λ_1, λ_2 such that

$$0 < c_1 \le \left| \inf_{\Omega^*} u^* \right| \le c_2 \tag{31}$$

Proof. Apply Lemma 10 to $\omega_1 = \lambda_1(|x|^2 - 1)/2$ and $\omega_2 = \lambda_2(|x|^2 - n^2)/2$

Another important result is the localization Theorem which will be used in the proof of compactness theorem and strict convexity of solutions.

Theorem 13 (Localization [2]). Let u be a solution of MA inequality

inside a convex set Ω , and let l(x) is a supporting sloe to u. If the convex set

$$W = \{u(x) = l(x)\}$$
(32)

contains more than one point (hence not strictly convex) then it can not have an extremal point in Ω (i.e. this set has to exit the domain of the definition).

As a consequence of Lemmas 13, we get the compactness for normalized solutions. [1]

The proof of regularity results uses the properties of the sections of the solutions i.e. the sets

$$S(x, p, t) := \{ y \in \Omega : u(y) \le u(x) + p.(y-x) + t \} \text{ where, } p \in \partial u(x) \text{ and } t \ge 0$$

$$(33)$$

the modulus of convexity is defined to be

$$\omega(x, u, t) := \sup_{p \in \partial u(x)} diam S(x, p, t)$$
(34)

and

$$\omega_{\Omega'} = \sup_{x \in \Omega'} \omega(x, u, t) \quad \Omega' \subset \subset \Omega \tag{35}$$

8.6 $C^{1,\alpha}$ Regularity

It is enough to prove the $C^{1,\alpha}$ regularity of renormalized solutions u with $\inf_{\Omega} u = u(x_0)$ and $u|_{\partial\Omega} = 0$. Let $C_{\beta} \subset \mathbb{R}^{n-1}$ be the cone with vertex $(x_0, u(x_0))$ and base $\{u = (1 - \beta)u(x_0)\}$. Suppose C_{α} is the graph of h_{α} .

Using the compactness result, one can find a universal δ for which

$$h_{1/2} \le (1-\delta)h_1$$
 (36)

After renormalizing the level surface $\{u = 2^{-k}\}$ and iteration, we get:

$$h_{2^{-k}} \le (1-\delta)^k h_1 \tag{37}$$

Since u is Lipschitz we have $h_1(x) \leq C|x-x_0|+u(x_0)$. Letting $2^{-\alpha'} = 1-\delta$ we get

$$h_{2^{-k}}(x) \le C(2^{-k})^{\alpha}|x| \le C2^{-k}$$
(38)

for $|x| \le (2^{-k})^{(1-\alpha)}$

By the comparison Lemma 10, we have $u(x) \leq h_{2^{-k}}(x)$ as long as $h_{2^k}(x) \leq (1-2^{-k})u(x_0)$. This means that if for every x, we pick k that satisfies

$$\left(\frac{-C}{u(x_0)}\right)2^{-(k+1)(1-\alpha')} \le |x-x_0| \le \left(\frac{-C}{u(x_0)}\right)2^{-k(1-\alpha')} \tag{39}$$

then,

$$h_{2^k}(x) \le (1 - 2^{-k})u(x_0) \tag{40}$$

And direct computation gives:

$$u(x) - u(x_0) \le C|x - x_0|^{1+\alpha} \text{ where, } \alpha = \frac{\alpha'}{1 - \alpha'}$$
 (41)

This shows that for all supporting planes l_{x_0} , we have:

$$\sup_{B(x_0,r)} |u(x) - l_{x_0}(x)| \le Cr^{1+\alpha}$$
(42)

and this will imply that u is $C^{1,\alpha}$.

8.7 Sobolev Regularity

Theorem 14 (Caffarelli [1]). Let u be a convex viscosity solution of the MA equation on a normalized convex set Ω and $u|_{\partial\Omega} = 0$ then,

(I) $\forall p < \infty, \exists \epsilon = \epsilon(p) \ s.t. \ if$

$$|f - 1| \le \epsilon \tag{43}$$

then,

$$u \in W^{2,p}\left(B_{1/2}\right) \tag{44}$$

and

$$||u||_{W^{2,p}(B_{1/2})} \le C(\epsilon)$$
 (45)

(II) If f > 0 and is continuous, then $u \in W^{2,p}(B_{1/2})$ for any $p < \infty$ and

$$||u||_{W^{2,p}(B_{1/2})} \le C(p,\sigma)$$
(46)

where σ is the modulus of continuity of f.

A consequence is the following theorem:

Theorem 15. $f \in C^{\alpha} \implies u \in C^{2,\alpha}$

Main Ideas of the Proof:

Lets consider a particular case: $1 \leq \det D_{ij} u \leq 1 + \epsilon(p)$ and we want to prove that $||u||_{W^{2,p}(B_{1/2})} \leq C(p)$.

Step 1 Take the section $S_{\mu,L} = \{u - L \leq \min(u - L) + \mu\}$ and normalize it by T_{μ} . Then approximate (using an approximation lemma as in [1]) the normalization of u - L by solutions of det $D_{ij}\omega = 1$. Notice that ω is $C^{2,\alpha}$

Step 2 Iterating this approximation at diadic levels $\mu = 2^{-k}$, one can show that

$$T_m u = D_\mu \tilde{T}_m u \tag{47}$$

where $D_m u = \left(\frac{1}{2\mu}\right)^{1/2}$ Id is a dilation and and $\tilde{T}_m u$ is a transformation of norm

$$||\tilde{T}_{\mu}||, ||\tilde{T}_{m}u^{-1}|| \le \mu^{-\sigma}$$
 (48)

with $\sigma = \sigma(\epsilon)$ is as small as we want.

So far we have a normalized solution u on $T_{\mu}(S_{\mu,L})$ with the following properties:

(a) $1 \leq \det D_{ij}u \leq 1+\epsilon$. (b) $\{u=1\}$ is trapped between B_1 and B_n . (c) u is ϵ away from the $C^{2,\alpha}$ approximation function ω that solves $\det D_{ij}\omega = 1$ and $\{\omega = 0\} = \{u = 0\}$

Step 3

Lemma 16. Let $\Gamma(u - \frac{1}{2}\omega)$ be the convex envelope of $u - \frac{1}{2}\omega$, then, the contact set $C = \{\Gamma(u - \frac{1}{2}\omega) = u - \frac{1}{2}\omega\}$ satisfies:

$$\frac{|B_{1/2} \cap C|}{|B_{1/2}|} \ge 1 - C\epsilon^{1/2} \tag{49}$$

in other words, the contact points cover as large a portion of $B_{1/2}$ as we want.

Corollary 17. At any contact point x_0 , there exist a plane L_{x_0} such that in all of Ω

$$L_{x_0}(x) \le (u - \frac{1}{2}\omega)(x) \text{ and } L_{x_0}(x_0) = (u - \frac{1}{2}\omega)(x_0)$$
 (50)

which means that for any contact point x_0 , u has a tangent paraboloid by below of the form

$$L_{x_0} + \frac{1}{N} |x - x_0|^2 \tag{51}$$

Remark 18. If u has a tangent paraboloid by below $u \ge \frac{1}{\lambda}|x|^2$ then u has a tangent paraboloid by above $u \le \lambda^{n-1}|x|^2$ because one can see that a paraboloid from below puts a uniform bound $||\tilde{T}_{\mu}|| \le \lambda$ then since det $\tilde{T}_m u = 1$, we also get a bound by below.

Step 4 having controlled tangent paraboloids from above and below $\implies W^{2,p}$ estimates.

References

- Caffarelli, L. A, A priori estimates and the geometry of the Monge Ampère equation. IAS/Park City Math. Ser. 2 (1996), no. 1, 5–63;
- [2] Caffarelli, L. A, A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity. Ann. of Math. 131 (1990), no. 1, 129–134;