Optimal Transport and Applications

Summer School, Lake Arrowhead*

Oct 6th - Oct 11th 2013

Organizers:
Nestor Guillen
University of California, Los Angeles, USA
Dimitri Shlyakhtenko
University of California, Los Angeles, USA
Christoph Thiele
University of California, Los Angeles, USA / University of Bonn, Germany

*supported by NSF grand DMS 1001535

Contents

1 Stability in the anisotropic isoperimetric inequality 5
Marcos Charalambides, UC Berkeley 5
1.1 The anisotropic isoperimetric inequality 5
1.2 Gromov's proof revisited 6
1.3 From equality to near-equality 8
1.4 Stability in the Brunn-Minkowski inequality 9
2 Hölder regularity of optimal transport maps, and underlying inequalities from convex geometry 11
Nick Cook, UCLA 11
2.1 Introduction 11
2.2 Geometric approach to Lemmas 1 and 4 13
3 A convexity theory for interacting gases and equilibrium crystals 17
Matías G. Delgadino, UMD 17
3.1 Introduction 17
3.2 Interpolation of Probability Measures 17
3.3 Displacement Convexity 19
3.3.1 Applications of Convexity 20
4 Differential equations methods for the Monge-Kantorovich mass transfer problem 22
Taryn C Flock, UC Berkeley 22
4.1 Introduction 22
4.1.1 The Monge problem 22
4.1.2 The Monge-Kantorovich problem 22
4.1.3 The Monge-Kantorovich dual problem 23
4.1.4 Solving the Monge problem 23
4.2 The p-Laplacian 24
4.3 Sketch of the construction in [3] 24
4.4 Historical Remark 26
5 Benamou-Brenier's approach for OTT 28
Augusto Gerolin, Universitá? di Pisa 28
5.1 Introduction 28
5.2 Two Motivations 29
5.3 Heuristics 30
5.4 Euler Equation and Optimal Transport 31
5.5 Geodesic Spaces 32
5.6 Convex Reformulation of Benamou-Brenier 33
5.6.1 Dual Formulation 34
6 Polar Factorization and Monotone Rearrangment of Vector- Valued Functions 36
Jordan Greenblatt, UCLA 36
6.1 Introduction 36
6.2 Monge-Kantorovich problems 38
6.3 Existence and uniqueness of solutions to the mixed MKP 39
6.4 Proof of polar factorization theorem 40
7 An Elementary Introduction to Monotone Transportation 42
Paata Ivanisvili, MSU 42
7.1 Introduction 42
7.2 A construction of the Brenier Map 43
7.3 The Brunn-Minkowski Inequality 44
7.4 The Marton-Talagrand Inequality 45
8 A Priori Estimates and the Geometry of the Monge-Ampère Equation 47
Sajjad Lakzian, CUNY 47
8.1 Introduction 47
8.2 Fully Nonlinear Uniformly Elliptic PDE 47
8.3 Caffrelli's Main Results 48
8.4 Monge-Ampère Equation 50
8.5 Geometric Properties, Alexandrov Solutions and Localization 50
$8.6 C^{1, \alpha}$ Regularity 52
8.7 Sobolev Regularity 53
9 Partial differential equations and Monge-Kantorovich mass transport 56
Tau Shean Lim, UW-Madison 56
9.1 Quick survey on Monge-Kantorovich problem 56
9.2 Case for $c(x, y)=\frac{1}{2}|x-y|^{2}$ 57

8 A Priori Estimates and the Geometry of the Monge-Ampère Equation

after L. Caffarelli
A summary written by Sajjad Lakzian

Abstract

We will very briefly touch on Caffarelli's regularity theory for fully nonlinear PDE and the geometry and regularity of the Monge-Ampère equation.

8.1 Introduction

The well known regularity results for small perturbation of linear equations are as follows:
(I) [Cordes-Nienberg Type Estimates]. Let $0<\alpha<1$ and u a bounded solution on B_{1} of $L u=a_{i j} D_{i j} u=f,\left|a_{i j}-\delta_{i j}\right| \leq \delta_{0}(\alpha)$ small enough, and f bounded; then,

$$
\begin{equation*}
\|u\|_{C^{1, \alpha}\left(B_{1 / 2}\right)} \leq C\left(\|u\|_{L^{\infty}\left(B_{1}\right)}+\|f\|_{L^{\infty}}\right) \tag{1}
\end{equation*}
$$

(II) [Calderon-Zygmund]. if $f \in L^{p}$ for some $1<p<\infty$ and $\delta_{0}(p)$ small enough, then

$$
\begin{equation*}
\|u\|_{W^{2, p}\left(B_{1 / 2}\right)} \leq C\left(\|u\|_{L^{\infty}\left(B_{1}\right)}+\|f\|_{L^{p}}\right) . \tag{2}
\end{equation*}
$$

(III) [Schauder]. If $a_{i j}$ and f are of class C^{α} then,

$$
\begin{equation*}
\|u\|_{C^{2, \alpha}\left(B_{1 / 2}\right)} \leq C\left(\|u\|_{L^{\infty}\left(B_{1}\right)}+\|f\|_{C^{\alpha}}\right) . \tag{3}
\end{equation*}
$$

Caffarelli [1] has generalized these type of estimates to Fully nonlinear uniformly elliptic PDEs.

8.2 Fully Nonlinear Uniformly Elliptic PDE

The equation is of the form

$$
\begin{equation*}
F\left(D^{2} u, x\right)=f(x) \tag{4}
\end{equation*}
$$

Uniform ellipticity in D^{2} of equation 4 means that there exist λ and Λ such that for any matrix $N \in M_{n \times n}$ and any $N \in S^{+}$we have

$$
\begin{equation*}
0<\lambda\|M\|<F(N+M, x)-F(N, x) \leq \Lambda\|M\| \tag{5}
\end{equation*}
$$

Definition 1 (Viscosity Solution). The continuous function u is called a C^{2}-viscosity solution of (4) if for any $C^{2}-$ subsolution (resp. supersolution) $\phi, u-\phi$ cannot have an interior minimum (resp. maximum).

Let S denote the symmetric matrices then, $\beta(x)$, the oscillation of F in the variable x is given by:

$$
\begin{equation*}
\beta(x)=\sup _{M \in S} \frac{F(M, x)-F(M, 0)}{\|M\|} \tag{6}
\end{equation*}
$$

Caffarelli's results are as follows:

8.3 Caffrelli's Main Results

Theorem 2 ($W^{2, p}$ Regularity). Let u be a bounded viscosity solution of $F\left(D^{2} u, x\right)=f(x)$ in B_{1} and assume that solutions ω of the Dirichlet problem

$$
f(x)=\left\{\begin{array}{lr}
F\left(D^{2} u, x\right)=0 & \text { in } B_{r} \\
\omega=\omega_{0} & \text { in } \partial B_{r}
\end{array}\right.
$$

satisfy he interior apriori estimate

$$
\begin{equation*}
\|\omega\|_{C^{1,1}\left(B_{r / 2}\right)} \leq C r^{-2}\|\omega\|_{L^{\infty}\left(\partial B_{r}\right)} \tag{7}
\end{equation*}
$$

Let $n<p<\infty$ and assume that $f \in L^{p}$ and for some $\theta=\theta(p)$ suficiently small

$$
\begin{equation*}
\sup _{B_{1}} \beta(x) \leq \theta(p) \tag{8}
\end{equation*}
$$

Then $\left.u\right|_{B_{1 / 2}}$ is in $W^{2, p}$ and

$$
\begin{equation*}
\|u\|_{W^{2, p}\left(B_{1 / 2}\right)} \leq C\left(\sup _{\partial B_{1}}|u|+\|f\|_{L^{p}}\right) \tag{9}
\end{equation*}
$$

Theorem 3 ($C^{1, \alpha}$ Regularity). Assume that solutions ω to the equation

$$
\begin{equation*}
F\left(D^{2} u, \omega\right)=0 \tag{10}
\end{equation*}
$$

in B_{r} satisfy the a priori estimate

$$
\begin{equation*}
\|\omega\|_{C^{1, \bar{\alpha}}\left(B_{r / 2}\right)} \leq C r^{-(1+\bar{\alpha})}\|\omega\|_{L^{\infty}\left(B_{r}\right)} \tag{11}
\end{equation*}
$$

Then for any $0<\alpha<\bar{\alpha}$ there exists $\theta=\theta(\alpha)$ so that if

$$
\begin{equation*}
f_{B_{r}} \beta^{n}(x) d x \leq \theta \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{B_{r}}|f(x)|^{n} d x \leq C_{1} r^{(\alpha-1) n} \tag{13}
\end{equation*}
$$

then any bounded solution u of

$$
\begin{equation*}
F\left(D^{2} u, x\right)=f(x) \tag{14}
\end{equation*}
$$

in $B_{r_{0}}$ is $C^{1, \alpha}$ at the origin. That is, there exist a linear function l such that for $r<r_{0}$

$$
\begin{equation*}
|u-l| \leq C_{2} r^{1+\alpha} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\|l\|_{C^{1}} \leq C_{3} \tag{16}
\end{equation*}
$$

with

$$
\begin{equation*}
C_{2}, C_{3} \leq C(\alpha) r_{0}^{-(1+\alpha)} \sup _{B_{r_{0}}}|u|+C_{1}^{1 / n} \tag{17}
\end{equation*}
$$

Theorem 4 ($C^{2, \alpha}$ Regularity). Assume the existence of $C^{2, \bar{\alpha}}$ interior a priori estimates for solutions of

$$
\begin{equation*}
F\left(D^{2} \omega+M, 0\right)=0 \tag{18}
\end{equation*}
$$

for any M satisfying

$$
\begin{equation*}
F(M, 0)=F(0,0)=0 \tag{19}
\end{equation*}
$$

Then if $0<\alpha<\bar{\alpha}$,

$$
\begin{gather*}
f_{B_{r}} \beta^{n} d x \leq C r^{\alpha n} \tag{20}\\
f_{B_{r}}|f(x)|^{n} d x \leq C r^{\alpha n} \tag{21}
\end{gather*}
$$

and u is a solution of $F\left(D^{2} u, x\right)=f(x)$, then, u is $C^{2, \alpha}$ at the origin (in the same sense as above).

These regularity results are proven by exploring Alexander-BakelmanPucci maximum principle and Krylov-Safanov Harnack's Inequality.

8.4 Monge-Ampère Equation

We will discuss the solutions to the Monge-Ampère equation, $\operatorname{det} D_{i j} u=f$ and $0<\lambda_{1} \leq f \leq \lambda_{2}<\infty$ on a convex set Ω. MA equation is perhaps the most famous example of non-uniformly elliptic PDE.

8.5 Geometric Properties, Alexandrov Solutions and Localization

Solutions to the MA quation are invariant under affine transformations with the proper renormalization; i.e. if u is a solution and $T X=A X+B$ is an affine transformation, then

$$
\begin{equation*}
w=\frac{1}{(\operatorname{det} T)^{2 / n}} u(T X) \tag{22}
\end{equation*}
$$

is also a solution. This means that one may produce new solutions by "stretching" the graph of u in some directions and "squeezing" it in other directions (in a way that keeps the Jacobian of ∇u fixed) and hence producing singular solutions.

This fact also tells us that the estimates on the solutions are inevitably dependent on the geometry of the domain of the definition.

Definition 5 (Generalized (Alexandrov) Solutions). Let ν be a Borel measure on Ω, an open and convex subset of \mathbb{R}^{n}. The convex function $u \in C(\Omega)$ is a generalized solution or Alexandrov solution to the MA equation

$$
\begin{equation*}
\operatorname{det} D^{2} u=\nu \tag{23}
\end{equation*}
$$

if the $M A$ measure $M u$ equals $\nu . M u$ is defined as follows:

$$
\begin{equation*}
M u(E)=|\partial u(E)| \tag{24}
\end{equation*}
$$

Remark 6. For the $M A$ equation $\operatorname{det} D^{2} u=f$, we take $\nu=f \mathcal{L}(\mathcal{L}$: Lebesque measure.)

Proposition 7. if f is continuous then every Alexandrov solution u is also a viscosity solution.

Lemma 8. If $u, v \in C(\bar{\Omega}),\left.u\right|_{\partial \Omega}=v_{\partial \Omega}$ and $v \geq u$ in Ω, then,

$$
\begin{equation*}
\partial v(\Omega) \subset \partial u(\Omega) \tag{25}
\end{equation*}
$$

Consequences of Lemma 8:
Theorem 9 (Alexandrov Maximum Principle). $u: \Omega \rightarrow \mathbb{R}$ convex and $\left.u\right|_{\partial u}=0$ then,

$$
\begin{equation*}
|u(x)|^{n} \leq C_{n}(\operatorname{diam} \Omega)^{n-1} \operatorname{dist}(x, \partial \Omega)|\partial \Omega| \quad \forall x \in \Omega \tag{26}
\end{equation*}
$$

Lemma 10 (Comparison Principle). Let u, v convex functions on open bounded convex Ω and $u \geq v$ on $\partial \Omega$. If $\operatorname{det} D^{2} u \leq \operatorname{det} D^{2} v$ (in the $M A$ measure sense) then,

$$
\begin{equation*}
u \geq v \text { in } \Omega \tag{27}
\end{equation*}
$$

One key tool in studying MA equation is John's Lemma:
Lemma 11 (John's Lemma). For any open bounded convex set O, there exist an ellipsoid E such that

$$
\begin{equation*}
E \subset S \subset n E \tag{28}
\end{equation*}
$$

hence, there exist an invertible orientation preserving affine transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $T(S)$ is normalized i.e. $B_{1} \subset T(S) \subset B_{n}$

One immediate consequence is the following: Let u is a strictly convex solution of MA inequality on Ω then for any $x \in \Omega^{\prime} \subset \subset \Omega$ and t sufficiently small; Then, if T normalizes the section $S(x, p, t)$, then the normalization, u^{*} of u given by:

$$
\begin{equation*}
u^{*}(y):=(\operatorname{det} T)^{2 / n}\left(u\left(T^{-1}(y)\right)-u(x)-p \cdot\left(T^{-1}(y)-x\right)-t\right) \tag{29}
\end{equation*}
$$ 0.

solves the MA inequality on $T(S(x, p, t))$ with boundary condition $\left.u^{*}\right|_{\partial T(S(x, p, t))}=$

Lemma 12. Let Ω^{*} be a normalized open convex set i.e. $B_{1} \subset \Omega^{*} \subset B_{n}$ and let u^{*} solve

$$
\begin{equation*}
\lambda_{1} \leq \operatorname{det} D^{2} u \leq\left.\lambda_{2} \quad u^{*}\right|_{\partial \Omega^{*}}=0 \tag{30}
\end{equation*}
$$

(we call u^{*} a normalized solution) then, there constants c_{1}, c_{2} depending on λ_{1}, λ_{2} such that

$$
\begin{equation*}
0<c_{1} \leq\left|\inf _{\Omega^{*}} u^{*}\right| \leq c_{2} \tag{31}
\end{equation*}
$$

Proof. Apply Lemma 10 to $\omega_{1}=\lambda_{1}\left(|x|^{2}-1\right) / 2$ and $\omega_{2}=\lambda_{2}\left(|x|^{2}-n^{2}\right) / 2$

Another important result is the localization Theorem which will be used in the proof of compactness theorem and strict convexity of solutions.

Theorem 13 (Localization [2]). Let u be a solution of MA inequality inside a convex set Ω, and let $l(x)$ is a supporting sloe to u. If the convex set

$$
\begin{equation*}
W=\{u(x)=l(x)\} \tag{32}
\end{equation*}
$$

contains more than one point (hence not strictly convex) then it can not have an extremal point in Ω (i.e. this set has to exit the domain of the definition).

As a consequence of Lemmas 13, we get the compactness for normalized solutions. [1]

The proof of regularity results uses the properties of the sections of the solutions i.e. the sets
$S(x, p, t):=\{y \in \Omega: u(y) \leq u(x)+p .(y-x)+t\}$ where, $p \in \partial u(x)$ and $t \geq 0$.
the modulus of convexity is defined to be

$$
\begin{equation*}
\omega(x, u, t):=\sup _{p \in \partial u(x)} \operatorname{diamS}(x, p, t) \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{\Omega^{\prime}}=\sup _{x \in \Omega^{\prime}} \omega(x, u, t) \quad \Omega^{\prime} \subset \subset \Omega \tag{35}
\end{equation*}
$$

8.6 $C^{1, \alpha}$ Regularity

It is enough to prove the $C^{1, \alpha}$ regularity of renormalized solutions u with $\inf _{\Omega} u=u\left(x_{0}\right)$ and $\left.u\right|_{\partial \Omega}=0$. Let $C_{\beta} \subset \mathbb{R}^{n-1}$ be the cone with vertex $\left(x_{0}, u\left(x_{0}\right)\right)$ and base $\left\{u=(1-\beta) u\left(x_{0}\right)\right\}$. Suppose C_{α} is the graph of h_{α}.

Using the compactness result, one can find a universal δ for which

$$
\begin{equation*}
h_{1 / 2} \leq(1-\delta) h_{1} \tag{36}
\end{equation*}
$$

After renormalizing the level surface $\left\{u=2^{-k}\right\}$ and iteration, we get:

$$
\begin{equation*}
h_{2^{-k}} \leq(1-\delta)^{k} h_{1} \tag{37}
\end{equation*}
$$

Since u is Lipschitz we have $h_{1}(x) \leq C\left|x-x_{0}\right|+u\left(x_{0}\right)$. Letting $2^{-\alpha^{\prime}}=1-\delta$ we get

$$
\begin{equation*}
h_{2^{-k}}(x) \leq C\left(2^{-k}\right)^{\alpha}|x| \leq C 2^{-k} \tag{38}
\end{equation*}
$$

for $|x| \leq\left(2^{-k}\right)^{(1-\alpha)}$
By the comparison Lemma 10, we have $u(x) \leq h_{2^{-k}}(x)$ as long as $h_{2^{k}}(x) \leq$ $\left(1-2^{-k}\right) u\left(x_{0}\right)$. This means that if for every x, we pick k that satisfies

$$
\begin{equation*}
\left(\frac{-C}{u\left(x_{0}\right)}\right) 2^{-(k+1)\left(1-\alpha^{\prime}\right)} \leq\left|x-x_{0}\right| \leq\left(\frac{-C}{u\left(x_{0}\right)}\right) 2^{-k\left(1-\alpha^{\prime}\right)} \tag{39}
\end{equation*}
$$

then,

$$
\begin{equation*}
h_{2^{k}}(x) \leq\left(1-2^{-k}\right) u\left(x_{0}\right) \tag{40}
\end{equation*}
$$

And direct computation gives:

$$
\begin{equation*}
u(x)-u\left(x_{0}\right) \leq C\left|x-x_{0}\right|^{1+\alpha} \text { where, } \quad \alpha=\frac{\alpha^{\prime}}{1-\alpha^{\prime}} \tag{41}
\end{equation*}
$$

This shows that for all supporting planes $l_{x_{0}}$, we have:

$$
\begin{equation*}
\sup _{B\left(x_{0}, r\right)}\left|u(x)-l_{x_{0}}(x)\right| \leq C r^{1+\alpha} \tag{42}
\end{equation*}
$$

and this will imply that u is $C^{1, \alpha}$.

8.7 Sobolev Regularity

Theorem 14 (Caffarelli [1]). Let u be a convex viscosity solution of the MA equation on a normalized convex set Ω and $\left.u\right|_{\partial \Omega}=0$ then,
(I) $\forall p<\infty, \exists \epsilon=\epsilon(p)$ s.t. if

$$
\begin{equation*}
|f-1| \leq \epsilon \tag{43}
\end{equation*}
$$

then,

$$
\begin{equation*}
u \in W^{2, p}\left(B_{1 / 2}\right) \tag{44}
\end{equation*}
$$

and

$$
\begin{equation*}
\|u\|_{W^{2, p}\left(B_{1 / 2}\right)} \leq C(\epsilon) \tag{45}
\end{equation*}
$$

(II) If $f>0$ and is continuous, then $u \in W^{2, p}\left(B_{1 / 2}\right)$ for any $p<\infty$ and

$$
\begin{equation*}
\|u\|_{W^{2, p}\left(B_{1 / 2}\right)} \leq C(p, \sigma) \tag{46}
\end{equation*}
$$

where σ is the modulus of continuity of f.

A consequence is the following theorem:
Theorem 15. $f \in C^{\alpha} \Longrightarrow u \in C^{2, \alpha}$

Main Ideas of the Proof:

Lets consider a particular case: $1 \leq \operatorname{det} D_{i j} u \leq 1+\epsilon(p)$ and we want to prove that $\|u\|_{W^{2, p}\left(B_{1 / 2}\right)} \leq C(p)$.

Step 1 Take the section $S_{\mu, L}=\{u-L \leq \min (u-L)+\mu\}$ and normalize it by T_{μ}. Then approximate (using an approximation lemma as in [1]) the normalization of $u-L$ by solutions of $\operatorname{det} D_{i j} \omega=1$. Notice that ω is $C^{2, \alpha}$

Step 2 Iterating this approximation at diadic levels $\mu=2^{-k}$, one can show that

$$
\begin{equation*}
T_{m} u=D_{\mu} \tilde{T}_{m} u \tag{47}
\end{equation*}
$$

where $D_{m} u=\left(\frac{1}{2 \mu}\right)^{1 / 2}$ Id is a dilation and and $\tilde{T}_{m} u$ is a transformation of norm

$$
\begin{equation*}
\left\|\tilde{T}_{\mu}\right\|,\left\|\tilde{T}_{m} u^{-1}\right\| \leq \mu^{-\sigma} \tag{48}
\end{equation*}
$$

with $\sigma=\sigma(\epsilon)$ is as small as we want.
So far we have a normalized solution u on $T_{\mu}\left(S_{\mu, L}\right)$ with the following properties:
(a) $1 \leq \operatorname{det} D_{i j} u \leq 1+\epsilon$. (b) $\{u=1\}$ is trapped between B_{1} and B_{n}. (c) u is ϵ away from the $C^{2, \alpha}$ approximation function ω that solves $\operatorname{det} D_{i j} \omega=1$ and $\{\omega=0\}=\{u=0\}$

Step 3
Lemma 16. Let $\Gamma\left(u-\frac{1}{2} \omega\right)$ be the convex envelope of $u-\frac{1}{2} \omega$, then, the contact set $C=\left\{\Gamma\left(u-\frac{1}{2} \omega\right)=u-\frac{1}{2} \omega\right\}$ satisfies:

$$
\begin{equation*}
\frac{\left|B_{1 / 2} \cap C\right|}{\left|B_{1 / 2}\right|} \geq 1-C \epsilon^{1 / 2} \tag{49}
\end{equation*}
$$

in other words, the contact points cover as large a portion of $B_{1 / 2}$ as we want.
Corollary 17. At any contact point x_{0}, there exist a plane $L_{x_{0}}$ such that in all of Ω

$$
\begin{equation*}
L_{x_{0}}(x) \leq\left(u-\frac{1}{2} \omega\right)(x) \text { and } L_{x_{0}}\left(x_{0}\right)=\left(u-\frac{1}{2} \omega\right)\left(x_{0}\right) \tag{50}
\end{equation*}
$$

which means that for any contact point x_{0}, u has a tangent paraboloid by below of the form

$$
\begin{equation*}
L_{x_{0}}+\frac{1}{N}\left|x-x_{0}\right|^{2} \tag{51}
\end{equation*}
$$

Remark 18. If u has a tangent paraboloid by below $u \geq \frac{1}{\lambda}|x|^{2}$ then u has a tangent paraboloid by above $u \leq \lambda^{n-1}|x|^{2}$ because one can see that a paraboloid from below puts a uniform bound $\left\|\tilde{T}_{\mu}\right\| \leq \lambda$ then since $\operatorname{det} \tilde{T}_{m} u=1$, we also get a bound by below.

Step 4 having controlled tangent paraboloids from above and below \Longrightarrow $W^{2, p}$ estimates.

References

[1] Caffarelli, L. A, A priori estimates and the geometry of the Monge Ampère equation. IAS/Park City Math. Ser. 2 (1996), no. 1, 5-63;
[2] Caffarelli, L. A, A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity. Ann. of Math. 131 (1990), no. 1, 129-134;

