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8 A Priori Estimates and the Geometry of

the Monge-Ampère Equation

after L. Caffarelli
A summary written by Sajjad Lakzian

Abstract

We will very briefly touch on Caffarelli’s regularity theory for fully
nonlinear PDE and the geometry and regularity of the Monge-Ampère
equation.

8.1 Introduction

The well known regularity results for small perturbation of linear equations
are as follows:

(I) [Cordes-Nienberg Type Estimates]. Let 0 < α < 1 and u a
bounded solution on B1 of Lu = aijDiju = f , |aij − δij| ≤ δ0(α) small
enough, and f bounded; then,

||u||C1,α(B1/2) ≤ C
(
||u||L∞(B1) + ||f ||L∞

)
. (1)

(II) [Calderon-Zygmund]. if f ∈ Lp for some 1 < p < ∞ and δ0(p)
small enough, then

||u||W 2,p(B1/2) ≤ C
(
||u||L∞(B1) + ||f ||Lp

)
. (2)

(III) [Schauder]. If aij and f are of class Cα then,

||u||C2,α(B1/2) ≤ C
(
||u||L∞(B1) + ||f ||Cα

)
. (3)

Caffarelli [1] has generalized these type of estimates to Fully nonlinear
uniformly elliptic PDEs.

8.2 Fully Nonlinear Uniformly Elliptic PDE

The equation is of the form

F (D2u, x) = f(x) (4)

Uniform ellipticity in D2 of equation 4 means that there exist λ and Λ
such that for any matrix N ∈Mn×n and any N ∈ S+ we have

0 < λ||M || < F (N +M,x)− F (N, x) ≤ Λ||M || (5)
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Definition 1 (Viscosity Solution). The continuous function u is called a
C2-viscosity solution of (4) if for any C2−subsolution (resp. supersolution)
φ, u− φ cannot have an interior minimum (resp. maximum).

Let S denote the symmetric matrices then, β(x), the oscillation of F in
the variable x is given by:

β(x) = sup
M∈S

F (M,x)− F (M, 0)

||M ||
(6)

Caffarelli’s results are as follows:

8.3 Caffrelli’s Main Results

Theorem 2 (W 2,p Regularity). Let u be a bounded viscosity solution of
F (D2u, x) = f(x) in B1 and assume that solutions ω of the Dirichlet problem

f(x) =

{
F (D2u, x) = 0 in Br

ω = ω0 in ∂Br

satisfy he interior apriori estimate

||ω||C1,1(Br/2) ≤ Cr−2||ω||L∞(∂Br) (7)

Let n < p <∞ and assume that f ∈ Lp and for some θ = θ(p) suficiently
small

sup
B1

β(x) ≤ θ(p) (8)

Then u|B1/2
is in W 2,p and

||u||W 2,p(B1/2) ≤ C

(
sup
∂B1

|u|+ ||f ||Lp
)
. (9)

Theorem 3 (C1,α Regularity). Assume that solutions ω to the equation

F (D2u, ω) = 0 (10)

in Br satisfy the a priori estimate

||ω||C1,ᾱ(Br/2) ≤ Cr−(1+ᾱ)||ω||L∞(Br) (11)
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Then for any 0 < α < ᾱ there exists θ = θ(α) so that if

 
Br

βn(x)dx ≤ θ (12)

and  
Br

|f(x)|ndx ≤ C1r
(α−1)n (13)

then any bounded solution u of

F (D2u, x) = f(x) (14)

in Br0 is C1,α at the origin. That is, there exist a linear function l such that
for r < r0

|u− l| ≤ C2r
1+α (15)

and
||l||C1 ≤ C3 (16)

with
C2, C3 ≤ C(α)r

−(1+α)
0 sup

Br0

|u|+ C
1/n
1 (17)

Theorem 4 (C2,α Regularity). Assume the existence of C2,ᾱ interior a priori
estimates for solutions of

F (D2ω +M, 0) = 0 (18)

for any M satisfying
F (M, 0) = F (0, 0) = 0. (19)

Then if 0 < α < ᾱ,  
Br

βndx ≤ Crαn, (20)

 
Br

|f(x)|ndx ≤ Crαn (21)

and u is a solution of F (D2u, x) = f(x), then, u is C2,α at the origin (in the
same sense as above).

These regularity results are proven by exploring Alexander-Bakelman-
Pucci maximum principle and Krylov-Safanov Harnack’s Inequality.
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8.4 Monge-Ampère Equation

We will discuss the solutions to the Monge-Ampère equation, detDiju = f
and 0 < λ1 ≤ f ≤ λ2 < ∞ on a convex set Ω. MA equation is perhaps the
most famous example of non-uniformly elliptic PDE.

8.5 Geometric Properties, Alexandrov Solutions and
Localization

Solutions to the MA quation are invariant under affine transformations with
the proper renormalization; i.e. if u is a solution and TX = AX + B is an
affine transformation, then

w =
1

(detT )2/n
u(TX) (22)

is also a solution. This means that one may produce new solutions by
”stretching” the graph of u in some directions and ”squeezing” it in other di-
rections (in a way that keeps the Jacobian of ∇u fixed) and hence producing
singular solutions.

This fact also tells us that the estimates on the solutions are inevitably
dependent on the geometry of the domain of the definition.

Definition 5 (Generalized (Alexandrov) Solutions). Let ν be a Borel mea-
sure on Ω, an open and convex subset of Rn. The convex function u ∈ C(Ω)
is a generalized solution or Alexandrov solution to the MA equation

detD2u = ν (23)

if the MA measure Mu equals ν. Mu is defined as follows:

Mu(E) = |∂u(E)| (24)

Remark 6. For the MA equation detD2u = f , we take ν = fL (L : Lebesque
measure.)

Proposition 7. if f is continuous then every Alexandrov solution u is also
a viscosity solution.

Lemma 8. If u, v ∈ C(Ω̄), u|∂Ω = v∂Ω and v ≥ u in Ω, then,

∂v(Ω) ⊂ ∂u(Ω) (25)
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Consequences of Lemma 8:

Theorem 9 (Alexandrov Maximum Principle). u : Ω → R convex and
u|∂u = 0 then,

|u(x)|n ≤ Cn(diamΩ)n−1dist(x, ∂Ω)|∂Ω| ∀x ∈ Ω (26)

Lemma 10 (Comparison Principle). Let u, v convex functions on open bounded
convex Ω and u ≥ v on ∂Ω. If detD2u ≤ detD2v (in the MA measure sense)
then,

u ≥ v in Ω (27)

One key tool in studying MA equation is John’s Lemma:

Lemma 11 (John’s Lemma). For any open bounded convex set O, there exist
an ellipsoid E such that

E ⊂ S ⊂ nE (28)

hence, there exist an invertible orientation preserving affine transformation
T : Rn → Rn such that T (S) is normalized i.e. B1 ⊂ T (S) ⊂ Bn

One immediate consequence is the following: Let u is a strictly convex
solution of MA inequality on Ω then for any x ∈ Ω′ ⊂⊂ Ω and t sufficiently
small; Then, if T normalizes the section S(x, p, t), then the normalization,
u∗ of u given by:

u∗(y) := (detT )2/n
(
u(T−1(y))− u(x)− p.(T−1(y)− x)− t

)
(29)

solves the MA inequality on T (S(x, p, t)) with boundary condition u∗
∣∣∣
∂T (S(x,p,t))

=

0.

Lemma 12. Let Ω∗ be a normalized open convex set i.e. B1 ⊂ Ω∗ ⊂ Bn and
let u∗ solve

λ1 ≤ detD2u ≤ λ2 u∗|∂Ω∗ = 0 (30)

(we call u∗ a normalized solution) then, there constants c1, c2 depending on
λ1, λ2 such that

0 < c1 ≤
∣∣∣inf

Ω∗
u∗
∣∣∣ ≤ c2 (31)

Proof. Apply Lemma 10 to ω1 = λ1(|x|2− 1)/2 and ω2 = λ2(|x|2−n2)/2
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Another important result is the localization Theorem which will be used
in the proof of compactness theorem and strict convexity of solutions.

Theorem 13 (Localization [2]). Let u be a solution of MA inequality
inside a convex set Ω, and let l(x) is a supporting sloe to u. If the convex

set
W = {u(x) = l(x)} (32)

contains more than one point (hence not strictly convex) then it can not have
an extremal point in Ω (i.e. this set has to exit the domain of the definition
).

As a consequence of Lemmas 13, we get the compactness for normalized
solutions. [1]

The proof of regularity results uses the properties of the sections of the
solutions i.e. the sets

S(x, p, t) := {y ∈ Ω : u(y) ≤ u(x)+p.(y−x)+t} where, p ∈ ∂u(x) and t ≥ 0.
(33)

the modulus of convexity is defined to be

ω(x, u, t) := sup
p∈∂u(x)

diamS(x, p, t) (34)

and
ωΩ′ = sup

x∈Ω′
ω(x, u, t) Ω′ ⊂⊂ Ω (35)

8.6 C1,α Regularity

It is enough to prove the C1,α regularity of renormalized solutions u with
infΩ u = u(x0) and u|∂Ω = 0 . Let Cβ ⊂ Rn−1 be the cone with vertex
(x0, u(x0)) and base {u = (1− β)u(x0)}. Suppose Cα is the graph of hα.

Using the compactness result, one can find a universal δ for which

h1/2 ≤ (1− δ)h1 (36)

After renormalizing the level surface {u = 2−k} and iteration, we get:

h2−k ≤ (1− δ)kh1 (37)
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Since u is Lipschitz we have h1(x) ≤ C|x−x0|+u(x0). Letting 2−α
′
= 1−δ

we get
h2−k(x) ≤ C(2−k)α|x| ≤ C2−k (38)

for |x| ≤ (2−k)(1−α)

By the comparison Lemma 10, we have u(x) ≤ h2−k(x) as long as h2k(x) ≤
(1− 2−k)u(x0). This means that if for every x, we pick k that satisfies

(
−C
u(x0)

)2−(k+1)(1−α′) ≤ |x− x0| ≤ (
−C
u(x0)

)2−k(1−α′) (39)

then,
h2k(x) ≤ (1− 2−k)u(x0) (40)

And direct computation gives:

u(x)− u(x0) ≤ C|x− x0|1+α where, α =
α′

1− α′
(41)

This shows that for all supporting planes lx0 , we have:

sup
B(x0,r)

|u(x)− lx0(x)| ≤ Cr1+α (42)

and this will imply that u is C1,α.

8.7 Sobolev Regularity

Theorem 14 (Caffarelli [1]). Let u be a convex viscosity solution of the MA
equation on a normalized convex set Ω and u|∂Ω = 0 then,

(I) ∀p <∞,∃ε = ε(p) s.t. if

|f − 1| ≤ ε (43)

then,
u ∈ W 2,p

(
B1/2

)
(44)

and
||u||W 2,p(B1/2) ≤ C(ε) (45)

(II) If f > 0 and is continuous, then u ∈ W 2,p
(
B1/2

)
for any p < ∞

and
||u||W 2,p(B1/2) ≤ C(p, σ) (46)

where σ is the modulus of continuity of f .
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A consequence is the following theorem:

Theorem 15. f ∈ Cα =⇒ u ∈ C2,α

Main Ideas of the Proof:
Lets consider a particular case: 1 ≤ detDiju ≤ 1 + ε(p) and we want to

prove that ||u||W 2,p(B1/2) ≤ C(p).

Step 1 Take the section Sµ,L = {u− L ≤ min(u− L) + µ} and normal-
ize it by Tµ. Then approximate (using an approximation lemma as in [1] )
the normalization of u−L by solutions of detDijω = 1. Notice that ω is C2,α

Step 2 Iterating this approximation at diadic levels µ = 2−k, one can
show that

Tmu = DµT̃mu (47)

where Dmu =
(

1
2µ

)1/2

Id is a dilation and and T̃mu is a transformation of
norm

||T̃µ|| , ||T̃mu−1|| ≤ µ−σ (48)

with σ = σ(ε) is as small as we want.
So far we have a normalized solution u on Tµ(Sµ,L) with the following

properties:
(a) 1 ≤ detDiju ≤ 1+ε. (b) {u = 1} is trapped between B1 and Bn. (c)

u is ε away from the C2,α approximation function ω that solves detDijω = 1
and {ω = 0} = {u = 0}

Step 3

Lemma 16. Let Γ(u− 1
2
ω) be the convex envelope of u− 1

2
ω, then, the contact

set C = {Γ(u− 1
2
ω) = u− 1

2
ω} satisfies:

|B1/2 ∩ C|
|B1/2|

≥ 1− Cε1/2 (49)

in other words, the contact points cover as large a portion of B1/2 as we want.

Corollary 17. At any contact point x0, there exist a plane Lx0 such that in
all of Ω

Lx0(x) ≤ (u− 1

2
ω)(x) and Lx0(x0) = (u− 1

2
ω)(x0) (50)
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which means that for any contact point x0, u has a tangent paraboloid by
below of the form

Lx0 +
1

N
|x− x0|2 (51)

Remark 18. If u has a tangent paraboloid by below u ≥ 1
λ
|x|2 then u has a

tangent paraboloid by above u ≤ λn−1|x|2 because one can see that a paraboloid
from below puts a uniform bound ||T̃µ|| ≤ λ then since det T̃mu = 1, we also
get a bound by below.

Step 4 having controlled tangent paraboloids from above and below =⇒
W 2,p estimates.
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