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� Introduction
For i = �, �, let Mi be a compact n-dimensional Riemannian manifold equipped with a smooth family of
metrics gi(t) satisfying Hamilton’s Ricci �ow equation [10]

∂gi(t)
∂t = −�Ric(gi(t)), (1.1)

for t 2 [�, Ti). The short-time existence and uniqueness of solutions was demonstrated in [10] and we denote
T = min(T�, T�). In this note, we consider the disjoint unionM� tM� equipped with a one-parameter family
of distance metrics D(t), for t 2 [�, T), so that

�
M� tM�, D(t)

�
is a complete, compact metric space whose

metric is compatible with the evolving metrics gi(t). That is to say, for each t 2 [�, T) and i = �, �

D(t)
��
Mi

= dgi(t), (1.2)

where dg denotes the distance metric induced by the Riemannian metric g. Following [14], we adopt the
characterization of super Ricci�ow solutions for an individual family of smoothRiemannianmetrics to de�ne
a notion of super Ricci �ow for the family of metric spaces (M� tM�, D(t)); i.e.

De�nition 1.1. WithM� andM� as above, a family of distancemetrics D(t) onM�tM�, for t 2 [�, T), is called
a super Ricci�owof the disjoint unionM�tM� providedwhenever� < a < b < T and u(x, t) : M�tM�×(a, b) !
R is a solution to the heat equation on M� tM�, then

Lip(u, t) := sup
x= �y

x,y2M�tM�

|u(x, t) − u(y, t)|
D(t; x, y) is non-increasing in t. (1.3)
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In Section 2, we recall work of von Renesse-Sturm [20] to clarify precisely what it means for u(x, t) to be a
solution to the heat equation on M� tM� (see De�nition 2.4 and the discussion therein).

We show

Theorem 1.2. For i = �, �, let Mi be a compact, oriented n-dimensional manifold equipped with a smooth
family of metrics gi(t) satisfying the Ricci �ow equation (1.1) for t 2 [�, Ti) and let T = min(T�, T�). Consider
the family of metric spaces (M� tM�, D(t)) and the map

D : [�, T) × (M� ×M�) �! (�,∞)
(t, x, y) 7! D(t; x, y) := distance between x 2 M�, y 2 M�, w.r.t. D(t).

Letting ∆Mt
�×Mt

�
denote the Laplacian on (M� ×M�, g�(t)� g�(t)), if

∂
∂t D ≥ ∆Mt

�×Mt
�
D, (1.4)

then the family of metrics D(t) is a super Ricci �ow of M� tM�.

Remark 1.3. The statement of Theorem 1.2 can be phrased slightly more generally in that (M�, g�(t)) and
(M�, g�(t)) need only be super-solutions to the Ricci �ow equation; i.e. gi(t) are super Ricci �ows (see De�ni-
tion 2.2) on Mi, i = �, �.

�.� Motivation

To begin, we place the result of Theorem 1.2 in context by giving a motivation for considering such a family
of metric spaces (M� tM�, D(t)).

A primary advantage of Theorem 1.2 is that condition (1.4) ismetric by nature and gives a su�cient condi-
tion for a family of distance metrics on the setM� tM� to evolve in a way that is compatible with the smooth
evolution of the Ricci �ow for the Riemannian metrics on M� and M�. This metric perspective allows for a
more broad description of solutions to the Ricci �ow which can persist through the development of singular-
ities. See also recent work of Kleiner-Lott [12] which introduces the concept of singular Ricci �ow to address
the problem of �owing through singularities in the three-dimensional case.

The formation of singularities is an important phenomenon and intensely studied aspect of the Ricci �ow
and geometric evolution equations in general. We say a solution (M, g(t)) to the Ricci �ow develops a Type I
singularity at some �nite time T < ∞, if

sup
M×[�,T)

(T − t)|Rm(·, r)| < +∞ (1.5)

The simplest example of a Type I singularity is the round sphere shrinking to apoint in�nite time and, in some
sense, the formation of such singularities is a ‘typical’ property of the Ricci �ow. Hamilton [10, 11] showed
that the Ricci �ow on a compact 3-manifold with positive Ricci curvature develops a Type I singularity and
shrinks to a round point. Later, in [5], Böhm-Wilking show that a general compact n-dimensional manifold,
for n ≥ �, with positive curvature operator also develops at Type I singularity in �nite time.

Like the shrinking sphere, the results mentioned above describe global singularities of the Ricci �ow;
whereas, a local singularity occurs on a compact subset of the manifold while keeping the volume positive.
Intuitively, a compactmanifold shaped like adumbbell develops a�nite-time local singularity as theneckpart
of the dumbbell contracts. Rigorous examples of such local singularities were �rst produced for non-compact
manifolds (initially by Simon [17] for warped product metrics onR×f Sn and then by Feldman-Ilmanen-Knopf
on holomorphic line bundles over CPn−�). However, Angenent-Knopf [1, 2] were the �rst to exhibit rigorous
examples of �nite time Type I local singularities for compact manifolds. Speci�cally, they produce a class of
rotationally symmetric metrics on Sn+�, for n ≥ �, which develop neck-pinch singularities through the Ricci
�ow in �nite-time.
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A solution (Mn+�, g(t)) of the Ricci �ow develops a neck-pinch singularity at time T < ∞ if there exists a
time-dependent family of proper open subsets N(t) ⇢ Mn+� and di�eomorphisms ϕt : R × Sn ! N(t) such
that g(t) remains regular onMn+� \ N(t) and the pullback ϕ*

t

⇣
g(t)
��
N(t)

⌘
onR × Sn approaches the “shrinking

cylinder” soliton metric
ds� + �(n − �)(T − t)gcan

in C∞loc as t % T, where gcan denotes the round metric on the unit sphere Sn. In [1], the authors show how
these neck pinch singularities arise for a class ofmetrics on Sn+�. In [2], they derive detailed asymptotics of the
pro�le of the solution near the singularity as well as comparable asymptotics for fully general neck pinches
whose initial metric need need not be rotationally symmetric. Later, Angenent-Caputo-Knopf [3] extend this
work by constructing smooth forward evolutions of the Ricci �ow starting from initial singular metrics which
arise from rotationally symmetric neck pinches on Sn+� by passing to the limit of a sequence of Ricci �ows
with surgery.

Together [1–3] provide a framework for developing the notion of a ‘canonically de�ned Ricci �ow through
singularities’ as conjectured by Perelman in [15]. Up to this point, continuing a solution of the Ricci �ow past
a singular time T < ∞ required surgery and a series of carefullymade choices so that certain crucial estimates
remain bounded through the �ow. A complete ‘canonical Ricci �ow through singularities’ would avoid these
arbitrary choices and would be broad enough to address all types of singularities that arise in the Ricci �ow.

The motivation for the current paper follows from this work of Angenent-Knopf and Angenent-Caputo-
Knopf, though our result allows for application in amore general context. Since the smooth forward evolution
described in [3] performs a topological surgery on Sn+� at the singular time T, all future times will consist of
two disjoint smooth Ricci �ows on a pair of manifolds. Furthermore, although the metric g(t) is no longer a
smooth Riemannian metric at the singular time t = T, the space Sn+� does retain the structure of a metric
space with distance metric denoted dT arising from the convergence of the distance metrics dt on (Sn+�, g(t))
through the evolution. Furthermore, these spaces converge as metric spaces in the Gromov-Hausdor� sense;
i.e.

lim
t%T

dGH
⇣
(Sn+�, dt), (Sn+�, dT)

⌘
= �. (1.6)

Our Theorem 1.2 gives a metric context in which to understand the evolution of the Ricci �ow for t > T, after
this singularity develops, by treating the disjoint union of two separate Ricci �ows as a single metric space
with distance metrics evolving in a way compatible to the �ow.

The remainder of this paper is organized as follows. In Section 2, we recall the characterization of the su-
per Ricci �ow given by McCann-Topping for compact Riemannian manifolds which motivates our De�nition
1.1. Also, we recall a construction of von Renesse-Sturm [20] and use a generalization of the Trotter-Chernov
product formula for time dependent operators to describe solutions to the heat equation on the disjoint union
M�tM�.With these de�nitions and context in place, we then prove Theorem 1.2 in Section 3 and give implica-
tions. In Section 4, we give some simple examples of metric constructions for the super Ricci �ow for disjoint
unions of two smooth Riemannian manifolds. In particular, we consider the situation when M� ⇠= M� and
consider the case of the �at torus and the round sphere.

� Background
As we hope to make clear, our current results tie together a progression of ideas which originated with a 2005
paper by M. von Renesse and K.T. Sturm [20], although its true origins can be recognized in earlier work of
Bakry-Emery [4], Cordero-Erausquin, McCann, Schmuckenschläger [6, 7] and others.
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�.� Metric characterizations of Ricci curvature lower bounds and the Ricci flow

In [20], von Renesse-Sturm characterize uniform lower Ricci curvature bounds of smooth Riemannian man-
ifolds (Mn , g) using various convexity properties of the entropy as well as transportation inequalities of vol-
ume measures, heat kernels, and gradient estimates of the heat semigroup on Mn. In fact, the metric nature
of the ideas presented in that paper introduced into the literature a discussion of so called “synthetic” de�ni-
tions of Ricci curvature lower bounds which do not rely on the underlying smooth structure of the manifold
and thus lend themselves to spaces lacking that smooth structure, such as metric measure spaces, Alexan-
drov spaces, or general metric spaces.

We state here only a small part the results in [20] which are relevant to our later discussion. First a bit of
notation: Let (Mn , g) be a smooth, connected, complete Riemannian manifold of dimension n. Denoting the
heat kernel onMn by ps(x, y) one can de�ne the operators ps : C∞c (M) ! C∞(M) and ps : L�(M) ! L�(M) by
f 7! psf (x) :=

R
M ps(x, y)f (y) dVol(y). They prove

Theorem 2.1. (c.f. [20]). For any smooth, complete Riemannian manifold (Mn , g), RicM ≥ � if and only if for
all bounded f 2 CLip(M) and all s > �,

Lip(psf ) ≤ Lip(f )

Later McCann-Topping [14] took a dynamic approach and reinterpreted the work of von Renesse-Sturm in
relation to a family of metrics g(t) onM evolving by (1.1). Speci�cally, they characterize super solutions of the
Ricci �ow by the contractivity of mass di�usions backwards in time. We refer to a super solutions of the Ricci
�ow as a super Ricci �ow. That is

De�nition 2.2. For a compact, oriented n-dimensional manifold, a super Ricci �ow is a smooth family g(t)
of metrics on M, t 2 [�, T], such that at each t 2 (�, T) and each point on M, one has

∂g
∂t + �Ric(g(t)) ≥ �. (2.1)

In addition, and more closely related to our purposes, they prove the following

Theorem 2.3. (c.f. [14]). LetMn be a compact, Riemannianmanifold of dimension n. A smooth one-parameter
family of metrics for t 2 [�, T) is a super Ricci �ow if and only if whenever � < a < b < T and f : M × (a, b) ! R
is a solution to ∂f

∂t = ∆g(t)f , then

Lip(f , t) := sup
x= �y

|f (x, t) − f (y, t)|
d(x, y, t) is non-increasing in t.

The quantity Lip(f , t) is the Lipschitz constant of f (·, t) evaluated using the metric g(t). It is precisely this
characterization which we use to de�ne the notion of a super Ricci �ow for the disjoint union of two evolving
Riemannian manifolds. However, we must �rst make sense of the local representation for the heat kernel on
M� tM� in order to describe what it means for a function u(x, t) on M� tM� to solve the heat equation.

�.� Deriving heat kernel operators via the metric and measure

In [20], von Renesse-Sturm study smooth, connected complete n-dimensional Riemannian manifolds and
characterize a uniform lower Ricci curvature bounds using, among other things, heat kernels and transporta-
tion inequalities for uniformdistributionmeasures ondistance spheres. One striking advantage of these char-
acterizations is that they depend only on themetric andmeasure of the underlying smooth Riemannianman-
ifold and thus allow for a notion of a Ricci curvature lower bound depending solely this basic, non-smooth
data. In fact, these characterizations ultimately led to the current de�nitions of Ricci curvature for arbitrary
metric measure spaces introduced independently by Lott-Villani and Sturm [13, 18, 19]. We recall now a part
of these original results of von Renesse-Sturm.
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Following the comment at the end of Section 1 of [20], one can view a smooth, connected Riemannian
manifold (M, g) as a separable metric measure space (M, dg ,Volg) and de�ne a family of Markov operators
σr acting on the set of bounded Borel measurable functions by σr f (x) =

R
M f (y) dσr,x(y), where the measure

σr,x is de�ned as
σr,x(A) :=

Volg(A \ ∂B(x, r))
Volg(∂B(x, r))

, A 2 B(M). (2.2)

Here B(x, r) denotes the ball of radius r centered at x. By the Arzela-Ascoli theorem and applying the Trotter-
Chernov product formula [8], there exists a subsequence such that for all s ≥ � and all bounded f 2 CLip(M),
it follows that limj!∞

⇣
σp�ns/j

⌘j
f (x) exists and converges uniformly in x 2 M and locally uniformly in s ≥ �.

In fact, letting ps(x, y) denote the minimal smooth heat kernel on Mn (i.e. the positive fundamental solution
to (∆ − ∂

∂s )ps(x, y) = �) then it follows that

psf (x) = lim
j!∞

⇣
σp�ns/j

⌘j
f (x). (2.3)

Thus, utilizing (2.3)wedescribe solutions to theheat equation for an arbitrarymetricmeasure space (M, d,m)
independently of the smooth structure.

�.� Constructing a heat kernel onM� t M�

Consider a single smooth manifold evolving by the Ricci �ow. That is, let g(t) be a family of metrics on Mn

satisfying (1.1) for t 2 [�, T), T > �. At each time t, just as in (2.2), we de�ne the normalized Riemannian
uniform distribution on spheres centered at x 2 (M, g(t)) of radius r > � by

σtr,x(A) :=
Hn−�(A \ ∂Bt(x, r))
Hn−�(∂Bt(x, r)) , A 2 B(M), (2.4)

where Bt(x, r) denotes the ball of radius r centered at xwith respect to the �xedmetric g(t). As before, we have
a family of Markov operators σtr on the set of bounded Borel-measurable functions (M, g(t)) de�ned above
replacing σr by σtr and integrating over (M, g(t)). It follows that (for a subsequence) as j ! ∞,

⇣
σtp�ns/j

⌘j
f (x) ! pts f (x) = es∆g(t) f (x) (2.5)

uniformly in x 2 (M, g(t)) and locally uniformly in s ≥ �, for all bounded f 2 CLip(Mn , g(t)).
Consider now M × [�, T), the entire space-time where the Ricci �ow is de�ned. Let B denote the Banach

space CLip(Mn , g(t)) with the sup-norm and L(B) the space of bounded linear operators on B. For each t,
de�ne functions Ft : [�,∞) ! L(B) where

Ft(s) = es∆g(t) . (2.6)

Note that Ft(�) = Id for every t 2 [�, T) and, for any f 2 B,

F0t(�)f = lim
s#�

Ft(s)f − f
s = lim

s#�

es∆g(t) f − f
s = ∆g(t)f .

Thus, it follows from the generalized Trotter-Chernov product formula (see [22], Main Theorem) applied to
the time-dependent operators given by (2.6), that for any function u : M × (�, T) ! R solving the initial value
problem 8

<

:

d
dt u(x, t) = ∆g(t)u(x, t)
u(x, �) = f (x),

(2.7)

there exists a corresponding one-parameter family of bounded linear operators U(t, �)�≤t≤T in B such that
u(x, t) = U(t, �)f (x). Therefore, for all � ≤ t ≤ T we have

U(t, �) = lim
m!∞

�Y

i=m−�
F i

m t

✓
t
m

◆
= lim

m!∞

�Y

i=m−�
e

t
m ∆g( i

m t) (2.8)
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with convergence of the limit in the strong operator topology of L(B). Combining this (2.5) we can further
write, for any f 2 B,

u(x, t) = U(t, �)f (x) = lim
m!∞

�Y

i=m−�
lim
j!∞

 
σ

i
m t
q

�nt
jm

!j

f (x). (2.9)

As noted earlier, this description gives ametric measure characterization of solutions to the heat equation on
the evolving manifold (M, g(t)).

Finally, we turn our attention to the situation of the current paper and use the characterization above
to describe solutions for the heat equation on M� t M�. Note that the description in (2.9) is locally de�ned
and thus allows for generalization to the disjoint union M� t M�. Indeed, as j ! ∞ the operators σ

i
m t
q

�nt
jm

are

ultimately restricted to individual componentsM� orM� ofM�tM� depending onwhether x 2 M� or x 2 M�
(resp.). Motivated by the discussion above we de�ne

De�nition 2.4. Let (Mi , gi(t)), for i = �, �, be compact Riemannian manifolds supporting smooth families
of metrics satisfying the Ricci �ow equation given by (1.1) for t 2 [�, Ti). Also, let D(t) be a family of distance
functions onM�tM� so that each t 2 [�,min(T�, T�))we have (M�tM�, D(t)) is a complete, compact metric
space compatible with the family of metrics gi(t) on Mi resp.; i.e. for i = �, �,

D(t)
��
Mi

= dgi(t), (2.10)

and such that
∂
∂t D(t; x, y) ≥ ∆Mt

�×Mt
�
D(t; x, y), for x 2 M�, y 2 M�. (2.11)

A function u : M� t M� × (�, T) ! R is said to solve the initial value problem (2.7) on M� t M� for f 2
CLip

�
M� tM�, D(t)

�
, provided

u(x, t) = lim
m!∞

�Y

i=m−�
lim
j!∞

 
σ

i
m t
q

�nt
jm

!j

f (x). (2.12)

Note that

Lemma 2.5. Let (Mi , gi(t)), for i = �, �, and (M� t M�, D(t)) be as above and suppose D(�; x, y) > � for all
x 2 M�, y 2 M�. A function u : M� t M� × (�, T) ! R solves the initial value problem (2.7) on M� t M� if and
only if u|Mi

and satis�es smooth heat equation on Mi, for i = �, �.

Proof. First, note that if D(�; x, y) > � for x 2 M�, y 2 M� at the initial time t = �, then by the maximum
principle (see, for example, Theorem 3.1.1 of [21]) we have

D(t; x, y) > �, for all t > � and x 2 M�, y 2 M�.

For a �xed t, it follows that the measures σtr,x when de�ned onM� tM� agree with σtr
��
Mi
for x 2 Mi provided

r is taken small enough; namely r < infx2M� ,y2M� D(t; x, y). Thus, for j large enough it follows that

σ
i
m t
q

�nt
jm

= σ
i
m t
q

�nt
jm

�����
Mi

. (2.13)

Now for u : M� tM� × (�, T) ! R which satis�es the IVP given in (2.7) we have that

u(x, t)
��
M�

= lim
m!∞

�Y

i=m−�
lim
j!∞

 
σ

i
m t
q

�nt
jm

�����
M�

!j

f (x). (2.14)

As pointed out in the discussion above, for a smooth Riemannian manifoldM� whose heat kernel is denoted
by ps(x, y), we have

psf (x) = lim
j!∞

⇣
σp�ns/j

⌘j
f (x).
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Thus, we can write using the notation as before where Ft(s) = es∆g(t) = pts,

u(x, t)
��
Mi

= lim
m!∞

�Y

i=m−�
p

i
m t
t
m
f (x) = lim

m!∞

�Y

i=m−�
F i

m t

✓
t
m

◆
f (x) = U(t, �)f (x). (2.15)

Thus, by the generalized Trotter product formula and (2.8), it follows that u(x, t)|M� solves the heat equation
on M�. In precisely the same way, we verify that u|M�

also satis�es the heat equation on M�.
Furthermore, suppose some function u(x, t) de�ned onM�tM� when restricted to eitherMi satis�es the

heat equation on that component. Again by (2.13) it follows that u(x, t) satis�es the IVP on the disjoint union
M� tM�.

� Proof of Theorem 1.2 and consequences

Proof of Theorem 1.2. WithMi as above, let ui : Mi × (�, T) be solutions to
∂ui
∂t = ∆gi(t)ui, i = �, �. Consider the

disjoint union M� tM� and de�ne a function u : M� tM� × (�, T) ! R by

u(x, t) =
(
u�(x, t), when x 2 M�

u�(x, t), when x 2 M�.
(3.1)

Recall, by assumption
D(t;m�,m�) > �, for all m� 2 M�,m� 2 M�, t > �, (3.2)

so by Lemma 2.5, the function u(x, t) satis�es the heat equation onM�tM�. Note that for any t 2 [�, T), there
exists p, q 2 (M� tM�, D(t)) such that

Lip(u, t) = |u(p, t) − u(q, t)|
D(t; p, q) . (3.3)

By Theorem 2.3 in [14], for �xed p, q 2 Mi, the property that Lip(u, t) is non-increasing as a function of t
is equivalent to gi(t) being a solution to the super Ricci �ow. Thus, we are done since each (Mi , gi(t)) in fact
solves (1.1) by assumption and so obviously (2.1). Therefore, we focus on the case when the Lipschitz constant
of u is achieved by a point in M� and a point in M�.

Fix t 2 (�, T). Without loss of generality, assume the value of Lip(u, t) is attained by the points p 2
M�, q 2 M�. In a neighborhood su�ciently near (p, q) 2 M� × M�, we may also assume (without loss of
generality) that u�(x, t) − u�(y, t) ≥ � so that the function on M� ×M� given by

(x, y) 7! u�(x, t) − u�(y, t)
D(t; x, y)

is nonnegative and has an absolute maximum at the point (p, q). Therefore,

r
✓
u�(x, t) − u�(y, t)

D(t; x, y)

◆����
(p,q)

= �, (3.4)

and
∆
✓
u�(x, t) − u�(y, t)

D(t; x, y)

◆����
(p,q)

≤ �. (3.5)

Furthermore, for points x, y 2 M� t M� su�ciently close to p 2 M� and q 2 M� (resp.) it follows from (3.2)
that u�(x, t) − u�(y, t) = u|M�

(x, t) − u|M�
(y, t) = u(x, t) − u(y, t).

To simplify notation, set u(x, y, t) = u�(x, t) − u�(y, t). From (3.4) we have

r
✓

u
D(t)

◆
= D(t)ru − urD(t)

�
D(t)

�� = �, (3.6)
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and thus
urD(t) = D(t)ru. (3.7)

To evaluate (3.5), note that

r�
✓

u
D(t)

◆
=
�
D(t)

�� �rD(t)ru + D(t)r�u −rurD(t) − ur�D(t)
�
− �D(t)rD(t)(D(t)ru − urD(t))

�
D(t)

��

= r�u
D(t) − u

r�D(t)
�
D(t)

�� − rD(t)⌦ru
�
D(t)

�� − ru ⌦rD(t)
�
D(t)

�� + �urD(t)⌦rD(t)
�
D(t)

�� ;

and, therefore

∆
✓

u
D(t)

◆
= trr�

✓
u

D(t)

◆

= tr
�
D(t)

�� �rD(t)ru + D(t)r�u −rurD(t) − ur�D(t)
�
− �D(t)rD(t)(D(t)ru − urD(t))

�
D(t)

��

= ∆u
D(t) −

u∆D(t)
�
D(t)

�� − � hrD(t),rui
�
D(t)

�� + �
u
��rD(t)

���
�
D(t)

�� ,

where we used (3.7) to evaluate in the last term. Furthermore, using (3.7) to writeru = urD(t)
D(t) , we have

� hrD(t),rui
�
D(t)

�� =
hrD(t), urD(t)

D(t) i
�
D(t)

�� = �
u
��rD(t)

���
�
D(t)

�� (3.8)

which implies

∆
✓

u
D(t)

◆����
(p,q)

= ∆u
D(t) −

u∆D(t)
�
D(t)

�� . (3.9)

So, by (3.5), it follows that at (p, q)
∆u
D(t) ≤

u∆D(t)
�
D(t)

�� ; (3.10)

or, equivalently,
∆u(p, q) ≤ u(p, q)

D(t; p, q)∆D(t; p, q). (3.11)

By assumption, ∂
∂t D(t) ≥ ∆D(t), and since

u
D(t) ≥ � we get

∆u ≤ u
D(t)

∂D(t)
∂t , (3.12)

and, thus, since u : (M� ×M�) × (�, T) ! R solves the heat equation by Lemma 2.5,

∂u
∂t ≤ u

D(t)
∂D(t)
∂t . (3.13)

Finally, note that

∂
∂t Lip(u, t) =

∂
∂t sup

x= �y
x2M� ,y2M�

|u(x, t) − u(y, t)|
D(t; x, y) = sup

x= �y
x2M� ,y2M�

D(t) ∂u∂t − u
∂D(t)
∂t�

D(t; x, y)
�� (3.14)

Since (3.13) holds for any pair of points which achieve the Lipschitz constant, it follows that ∂
∂t Lip(u, t) ≤

� and thus we have Lip(u, t) is decreasing as a function of t and we are done.

This can be easily generalized to address additional components.
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Corollary 3.1. For i = �, �, · · · , k, let (Mi , gi(t)) be compact n-dimensional manifolds whose metrics gi(t)
satisfy (1.1) for t 2 [�, Ti). Consider a family of metric spaces (M� t M� t · · ·Mk , D(t)) for t 2 (�, T), T =
min(T�, T�, · · · , Tk) and suppose that D(t) satis�es (1.4) for all x 2 Mi, y 2 Mj with i = � j, then the family of
metrics D(t) is a super Ricci �ow of M� tM� t · · · tMk.

Furthermore, considering (M� tM�, D(t)) as a family of metric spaces, the evolution inequality given in (1.4)
also provides control on how the distance between M� and M� changes over time. Namely, if at the initial
time t = �we have D(�; x, y) ≥ c > �, then by a direct application of the maximum principle, D(t; x, y) ≥ c for
all t > �.

Corollary 3.2. GivenMi as above and a family of metric spaces formed from the disjoint union (M� tM�, D(t))
such that (1.4) holds. If at the initial time D(�; x, y) ≥ c > � for some c 2 R, then D(t; x, y) ≥ c, for all t > �.

Remark 3.3. Note that while the condition ∂
∂t D ≥ ∆Mt

�×Mt
�
D alone isn’t enough to guarantee that a given dis-

tance metric D at time t = � between M� and M� will remain a distance metric for all t > �, we restrict our
attention to only those families D(t)which, in fact, are distancemetrics. In Section 4we give simple construc-
tions which verify that the class of such distance functions on M� tM� is nonempty.

� Examples
To better illustrate the content of Theorem 1.2 we mention a few simple examples. In general, for (M�, g�(t))
and (M�, g�(t)) as in Section 1, a family of distance metrics D(t) on M� t M� for t 2 [�, T) is a family of
non-negative functions

D(t) : M� tM� ×M� tM� ! R (4.1)

such that the following properties hold. For a, b, c 2 M� tM�, and all t 2 [�, T),
• D(t)(a, b) = � if and only if a = b
• D(t)(a, b) = D(t)(b, a)
• D(t)(a, b) ≤ D(t)(a, c) + D(t)(c, b)

Thus, we require these properties to hold implicitly in the statement of Theorem 1.2. Note, however, that the
metric D(t) is not an intrinsic distance as M� tM� is disconnected.

Consider the casewhere (M�, g�(�)) ⇠= (M�, g�(�))and thus g�(t) = g�(t) for all t satisfying (1.1) byunique-
ness. Set D(t) on M� tM� to be

D(t; a, b) =

8
>><

>>:

dgi(t)(a, b), if a, b 2 Mi

q
L�(t) + d�gi(t)(ϕ(a), b), if a 2 M�, b 2 M� or a 2 M�, b 2 M�,

(4.2)

where ϕ : M� ! M� is the identity map and L(t) depends only on t. Note that each of the properties for D(t)
to be a distance function hold naturally in this construction.

Now letting dt denote dgi(t) where there is no confusion since g�(t) = g�(t) and considering dt and D(t)
as maps on M� ×M�, we can relate ∆Mt

�×Mt
�
D(t) to ∆Mt

�×Mt
�
dt. Computing in local coordinates we have

∆(D(t))� = �p
|g|

∂i
⇣p

|g|gij∂j(D(t))�
⌘

(4.3)

= �p
|g|

∂i
⇣p

|g|gij�D(t)∂jD(t)
⌘

(4.4)

= �gij∂iD(t)∂jD(t) + �D(t)∆D(t); (4.5)
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and, directly we �nd ∆(D(t))� = ∆
�
L�(t) + d�t

�
= ∆d�t = � |rdt|� + �dt∆dt, since in this simple example we

assume that L(t) depends only on t. Thus,

dt∆Mt
�×Mt

�
dt = �

�∆Mt
�×Mt

�
(D(t))� −

��rMt
�×M

t
�dt
���
g(t) (4.6)

= gijt ∂iD(t)∂jD(t) + D(t)∆Mt
�×Mt

�
D(t) −

��rMt
�×M

t
�dt
���
g(t). (4.7)

Therefore,

∆Mt
�×Mt

�
D(t) = dt

D(t)∆Mt
�×Mt

�
dt +

��rMt
�×M

t
�dt
���
g(t)

D(t) − �
D(t) g

ij
t ∂iD(t)∂jD(t). (4.8)

Noting that ∂iD(t) = dt
D(t)∂idt thus, we can further simplify the last term in the expression above to give

∆Mt
�×Mt

�
D(t) = dt

D(t)∆Mt
�×Mt

�
dt +

��rMt
�×M

t
�dt
���
g(t)

D(t) − (dt)�
(D(t))� g

ij
t ∂id

t ∂jdt . (4.9)

Furthermore, since ∂
∂t D(t) =

�
D(t)

⇣
L ∂L

∂t + dt
∂dt
∂t

⌘
and using (4.9), the inequality (1.4) can be written

L(t)∂L∂t + dt
∂dt
∂t ≥ dt∆Mt

�×Mt
�
dt +

��rMt
�×M

t
�dt
���
g(t) −

✓
dt
D(t)

◆�
gijt ∂idt∂jdt , (4.10)

which simpli�es as

L(t)∂L∂t + dt
∂dt
∂t ≥ dt∆Mt

�×Mt
�
dt +

 
� −
✓

dt
D(t)

◆�
!
��rMt

�×M
t
�dt
���
g(t); (4.11)

where we used the fact that, for a local basis of tangent vectors ∂i on M� ×M�,
��rMt

�×M
t
�dt
���
g(t) = gt

⇣
rMt

�×M
t
�dt ,rMt

�×M
t
�dt
⌘

(4.12)

= (gt)ij gait ∂adt · gbjt ∂bdt (4.13)
= gijt ∂idt · ∂jdt . (4.14)

To make this construction more explicit, consider

Example 4.1. M� ⇠= M� ⇠= the �at torus T�.

Let (M�, g�(t)) ⇠= (M�, g�(t)) ⇠= (R�/Z�, gT� ) ⇠=
⇣
S� × S�,

� �
�π
�� dx� +

� �
�π
�� dy�

⌘
. Since RicT� ⌘ �, the �at

torus is a stationary point for the Ricci �ow and thus, gi(t) ⌘ gT� , for all t, and i = �, �. De�ne a family of
metrics D(t) : M� tM� ×M� tM� ! R≥� by setting

D(t; a, b) =

8
>><

>>:

dT� (a, b), if a, b 2 Mi

q
L�(t) + d�T� (ϕ(a), b), if a 2 M�, b 2 M� or a 2 M�, b 2 M�,

(4.15)

where ϕ : T� ! T� is the identity map. To interpret (1.4), we consider D(t) and dt as functions on T� × T�

with canonical metric

gT�×T� = gT� × gT� =
✓

�
�π

◆� ⇣
dx�
⌘�

+
⇣
dx�
⌘�

+
⇣
dx�
⌘�

+
⇣
dx�
⌘��

. (4.16)

Furthermore, since the metics are stationary, the Laplacian ∆Mt
�×Mt

�
is independent of t and dt = d so that,

inside the cut locus,

∆T�×T�d(a, b) = ∆�T�d(·, b)
���
a
+ ∆�T�d(a, ·)

���
b
= (�π)�
db(a)

+ (�π)�
da(b)

= �(�π)�
d(a, b) ; (4.17)
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and thus,
dt∆Mt

�×Mt
�
dt = d · ∆T�×T�d = d · �(�π)

�

d = �(�π)�. (4.18)

Also, since gijt = gij, we have

gijt ∂idt∂jdt = gij∂id∂jd = (�π)�
�X

i=�
(∂id)� = �(�π)�. (4.19)

Lastly, sincerT�×T�
d = gij∂id∂j = (�π)�δij∂id ∂j =

P�
i=�(�π)

�∂id ∂i, we get
���rMt

�×M
t
�dt
���
�

g(t)
=
���rT�×T�

d
���
�

= gij
⇣
rT�×T�

d
⌘i ⇣

rT�×T�
d
⌘j

(4.20)

= (�/�π)�δij
⇣
rT�×T�

d
⌘i ⇣

rT�×T�
d
⌘j

(4.21)

=
�X

i=�
(�/�π)�

⇣
rT�×T�

d
⌘i��

(4.22)

=
�X

i=�
(�/�π)�

h
(�π)�∂id

i�
(4.23)

=
�X

i=�
(�π)�(∂id)�=

���r�d
���
�
+
���r�d

���
�
= �(�π)�. (4.24)

Therefore, in this setting (4.11) becomes

L(t)∂L∂t ≥ �(�π)� − �(�π)�
✓

d
D(t)

◆�
. (4.25)

Roughly estimating � ≤ d/D(t) ≤ �, we can take L(t) = �π
p
�t + L�(�) so that L ∂L

∂t = �(�π)� which satis�es
(4.25). Naturally, any L(t) with growth larger than t�/� would also satisfy condition (1.4) as well and give
another family of distance metrics satisfying the super Ricci �ow on the disjoint union.

Remark 4.2. In general, for M� ⇠= M� ⇠= (Rn/Zn , gTn ) we would have L(t) = �π
p
�nt + L�(�).

Remark 4.3. A variation of this construction can be used forM� andM� which are only assumed to be home-
omorphic. In the de�nition of D(t) given in (4.2), take, for a 2 M�, b 2 M�

min
✓
inf
ϕ

q
L�(t) + d�g�(t)(ϕ(a), b)), inf

ϕ

q
L�(t) + d�g�(t)(a, ϕ−�(b))

◆
,

where the in�mum is taken over all homeomorphisms ϕ : M� ! M� and, as before, L(t) depends only on t.
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